Simple derivation of omitted variables bias

EDS 222

Tamma Carleton

Omitted variables bias is a common violation of the exogeneity assumption of Ordinary Least Squares (OLS), and causes estimated regression coefficients to be biased relative to true population parameters. Omitted variables bias arises when there exists a variable that you are not including in your regression but that satisfies the following two conditions:

1. The omitted variable is correlated with your dependent variable of interest
2. The omitted variable is correlated with at least one of your independent variables

Note that if only one of these conditions is met, you do not have a problem. To see how this bias arises mathematically, suppose the following relationship represents the true population relationship between y and x_{1} and x_{2} :

$$
y=\beta_{0}+\beta_{1} x_{1}+\beta_{2} x_{2}+\varepsilon
$$

But suppose you only are really interested in x_{1}, and therefore you only include x_{1} in your regression, ignoring x_{2}. What goes wrong?

First, note that condition $\# 1$ above holds as long as $\beta_{2}>0$, since the true population model tells us that a one unit change in x_{2} causes a β_{2} unit change in y. If the second condition also holds, we can write x_{2} as a function of x_{1} :

$$
x_{2}=\delta_{0}+\delta_{1} x_{1}+e
$$

If you do not include x_{2} in your regression, its effect on y is subsumed in your error term, i.e. variation in y that is not explained by your model:

$$
y=\beta_{0}+\beta_{1} x_{1}+\nu
$$

where $\nu=\beta_{2} x_{2}+\varepsilon$.
We can substitute our expression for x_{2} into this expression and rearrange terms to see that:

$$
\begin{aligned}
y & =\beta_{0}+\beta_{1} x_{1}+\nu \\
& =\beta_{0}+\beta_{1} x_{1}+\beta_{2}\left(\delta_{0}+\delta_{1} x_{1}+e\right)+\varepsilon \\
& =\beta_{0}+\beta_{2} \delta_{0}+\left(\beta_{1}+\beta_{2} \delta_{1}\right) x_{1}+\beta_{2} e+\varepsilon
\end{aligned}
$$

When we regress y only on x_{1}, ignoring x_{2}, we therefore obtain:

$$
y=\underbrace{\beta_{0}+\beta_{2} \delta_{0}}_{\text {intercept }}+\underbrace{\left(\beta_{1}+\beta_{2} \delta_{1}\right)}_{\text {slope }} x_{1}+\eta
$$

where η is mean zero because we assume that both e and ε are mean zero.
What's the problem? Our estimated intercept is now $\beta_{0}+\beta_{2} \delta_{0}$ and our estimated slope is now $\beta_{1}+\beta_{2} \delta_{1}$, both of which are biased estimators of the true β_{0} and β_{1} that we are after.

Note that these expressions help you think through which direction your bias is likely to go in practice. If β_{2} and δ_{1} are both positive, meaning that y and x_{2} are positively related as well as x_{2} and x_{1}, your slope coefficient will be biased upward when you omit x_{2} (and therefore your estimated slope coefficient should fall when you add x_{2} into the regression). In contrast, if either β_{2} or δ_{1} is negative, your slope coefficient will be biased downward when you omit x_{2}, and adding x_{2} into your regression should increase your estimated slope coefficient.

