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Today
Types of variables

Categorical, numerical, ordinal, ...

Probability density functions

De�nitions, the normal pdf, skew

Summary statistics

Central tendency and spread, quantiles, outliers

Law of large numbers

How big does my sample need to be?

2 / 48



Assignment #1 check-in: How's it going?Assignment #1 check-in: How's it going?

Reminder: OH Thursdays, Pine Room, 3:30-4:30pm
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Types of variablesTypes of variables
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Types of variables

Numerical variables
Object class numeric  in R

Can take on a wide range of possible values
Makes sense to add, subtract, multiply, etc.

Examples:
Height of the tree canopy across the Amazon
Length of Atlantic sword�sh
Daily average temperature

Discrete numerical variables take on only a limited set of values, often
counts (e.g., population)

Continuous numerical variables: can take on in�nite values within a range
(e.g., arsenic concentration in groundwater) 5 / 48



Types of variables

Numerical variables

Source: Allison Horst
6 / 48



Types of variables

Categorical variables
Object class factor  in R

Values correspond to one of a �xed number of categories

Possible values are called levels

Examples:

Land use type
Species of tree
Age group (e.g., <15, 15-64, 65+) (watch out! continuous numerical
data can often be stored as a categorical variable!)
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Types of variables

Categorical variables

Nominal variables are unordered descriptions

Ordinal variables are categories with a natural ordering

Binary variables only take on 0 or 1
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Types of variables

Categorical variables

Source: Allison Horst
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Probability density functionsProbability density functions
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Probability density functions
Remember: when we do statistics, we use statistics from a sample to learn
about parameters of a population.

A variable is a representation of something we care about in a population
(e.g., nitrate concentration of groundwater).

Many parameters we care about tell us something about what values we
might see for our variable in the population (e.g., average nitrate
concentrations).

Probability density functions are mathematical functions that tell us: how
likely are we to see values of a given range?
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Probability density functions
Probability density functions are mathematical functions that tell us: how
likely are we to see values of a given range?
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Probability density functions
For continuous variables, the probability density function (p.d.f.) tells us
the probability that a variable falls within a given range of values.

Formally: The p.d.f. of a continuous variable  with support (i.e., range of
possible values)  is an integrable function  satisfying:

�.  is positive for all  in 

�. The area under the curve  over the entire support  is equal to 1:

�. The probability that  falls between  and  is:

X

S f(x)

f(x) x S

f(x) S

∫
S

f(x)dx = 1

x A B

Pr(A ≤ x ≤ B) = ∫
B

A

f(x)dx
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Why isn't this simpler?
Q: Why can't I just interpret  as the probability that ?

A: Because continuous variables have  possible values...the
probability that your variable  exactly equals  is zero!

Luckily, for discrete variables it is this simple!

For discrete variable  , the probability mass function (p.m.f.)  tells us
the probability that .

Formally: The p.m.f. of a discrete variable  with support (i.e., range of
possible values)  is a function  satisfying:

�.  for all  in support 

�. 

�. 

f(x) X = x

∞

X x

x f(x)

X = x

X

S f(x)

P(X = x) = f(x) > 0 x S

∑x∈S f(x) = 1

P(A ≤ x ≤ B) = ∑x=B
x=A f(x) 14 / 48



Probability density functions (visual)
P.d.f.'s help us characterize the distribution of our population. The most
common/famous ones get names (e.g., normal, Gamma, ,...)

Let's look at a normal distribution*

The probability this normally distributed variable takes on a value between
-2 and 0 is shown in pink:

*This distribution happens to be what's called "standard" normal. We'll get into the weeds later!

t
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Probability density functions (visual)

Let's look at a normal distribution*

The probability this normally distributed variable takes on a value between
-2 and 2 is shown in pink:

*Yep, still a "standard" normal. Details later.
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The normal distribution
There are in�nite different normal distributions. They all have the following
p.d.f.:

where  is the mean (i.e., average) and  is the standard deviation (will
de�ne soon).  and  are parameters describing the population p.d.f.

f(x) = e
− ( )1

σ√2π

1
2

x−μ

σ

μ σ

μ σ
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Shapes of probability distributions
Key terms to describe p.d.f.'s:

�. A distribution can have skew (e.g., log-normal)
�. A distribution can have a long right tail or left tail (e.g., fat-tailed

climate sensitivity distributions!)
�. A distribution can be symmetric
�. A distribution can be unimodal, bimodal, or multimodal
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Shapes of probability distributions
Key terms to describe p.d.f.'s:

�. A distribution can have skew (e.g., log-normal)
Skew means the distribution is asymmetric around its mean

�. A distribution can have a long right tail or left tail (e.g., fat-tailed
climate sensitivity distributions!)

Long tails is a general term implying there is a lot of mass far away
from the mean (not a precise defn.)

�. A distribution can be symmetric
The distribution is symmetric around its mean (Q: what does this
imply about skew?)

�. A distribution can be unimodal, bimodal, or multimodal
A distribution with one (unimodal), two (bimodal), or more
(multimodal) "peaks"
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Shapes of probability distributions

Skew with a long right tail

(log-normal sample distribution)
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Shapes of probability distributions

Uni-, bi-, and multi-modal

(How many "peaks" do you see?)
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Summary statisticsSummary statistics
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Describing random variables
A probability density function describes a population

As we learned last week, we rarely have a census so we rarely can directly
describe the p.d.f. itself.

Instead, we use statistics from a sample to estimate parameters of the
population. Randomness in sampling means we call the variables in our
sample "random variables"

23 / 48



Measures of central tendency

We often begin to describe a distribution using measures
of central tendency (i.e., measures of the "middle").

Three are most common:

�. Mean
�. Median
�. Mode
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Mean = expected value = average
In a population, the mean is de�ned as:

In our sample, we compute the mean as:

We use  as an estimate of the parameter of interest, .

E[X] = μ = ∫
S

xf(x)dx

x̄ = ∑
i∈n

xi
1

n

x̄ μ
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Median = middle value
In a population, the median is de�ned as the value  for which half the
distribution falls below  and half above :

In our sample, we order all our data from lowest to highest and then
compute the median as:

 even? median = mean of the middle two values
 odd? median = middle value

m

m m

P(X ≤ m) = ∫
m

−∞

f(x)dx = = ∫
∞

m

f(x)dx = P(X ≥ m)
1

2

n

n
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Median and mean are not always close
Non-normal distribution  median and mean can diverge substantially⟹
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Mode = most frequent value

The mode is simply the most frequently observed value

This is much more useful for discrete data (ask yourself why!)
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Measures of spread

Central tendency only gets us so far...we also need
measures of spread.

�. Range (easy: min to max of your data)
�. Variance
�. Standard deviation
�. Quantiles
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Measures of spread: Variance
Answers the question, how far are observations from the mean, on average?

In the population:

In the sample:

Q: Why do we divide by ?

A: Lots of math to prove it (see here), but trust me,  will be a
biased estimate of  if you divide by !

Units of variance: units of the random variable, squared

V ar(X) = E[(X − μ)2] = σ2 = ∫
S
(x − μ)2f(x)dx

s2 =
∑i∈n(xi − x̄)2

n − 1

n − 1

s2

σ2 n
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https://www.khanacademy.org/math/ap-statistics/summarizing-quantitative-data-ap/more-standard-deviation/v/review-and-intuition-why-we-divide-by-n-1-for-the-unbiased-sample-variance


Measures of spread: Standard deviation
Just the square root of the variance!

In the population:

In the sample:

Units of standard deviation: units of the random variable

SD(X) = √E[(X − μ)2] = σ = √∫
S
(x − μ)2f(x)dx

s = √ ∑
i∈n

(xi − x̄)21

n − 1
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Some helpful rules
E[aX + b] = aE[X] + b

E[X + Y ] = E[X] + E[Y ]

var(X) = E[X2] − (E[X])2

var(aX + b) = a2var(X)
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Variance, visually
Pink: Low variance/standard deviation 

Green: High variance/standard deviation 

σ = 1

σ = 2
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Variance, visually
Back to the normal distributions

Changes in the mean shift the distribution right to left
Changes in the standard deviation stretch the distribution out (or
shrink it in)
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Measures of spread: Quantiles

Quantiles are cut points of a probability distribution

In our sample, quantiles are cut points of our sample data

How do we compute them?

We order our data from lowest to highest

For the -quantile, we divide these ordered data into  equal sized
subsamples

The value at the edge of the th subsample is the th -quantile
This tells you the value below which  of the data lie

Question: How many -quantiles are there for any given ?

Answer: There are  of the -quantiles

q q

k k q
k
q

q q

q − 1 q
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Example: The normal distribution
Common quantiles have names you have head of, such as quartiles for

:

Quartiles of the normal distribution

Interpretation: Q1 = �rst quartile, Q2 = second quartile, etc. The area below
the red curve is the same below Q1 as it is between Q1 and Q2, between Q2
and Q3, and above Q3.

q = 4
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The Inter-quartile Range
The inter-quartile range (often called the IQR) is the 3rd quartile minus the
1st quartile (i.e., the range of the "middle" 50% of the data)

This is another measure of variability, like variance. Larger IQR = more
variable data.

Often used as the edges of the box in a boxplot (we will do this in Lab!):
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Common quantiles and interpretation

Common quantiles have names you have heard of:

 Median tells us the value for which 50% of our sample sits below
(and 50% above)

 Terciles: tell us the values for which 33.33% (1st tercile) and
66.66% (2nd tercile) of our sample sits below

 Quartiles: tell us the values for which 25% (1st quartile), 50% (2nd
quartile), and 75% (3rd quartile) of our sample sits below

 Deciles: tell us the values for which 10% (1st decile), ..., 50% (5th
decile), ..., and 90% (9th decile) of our sample sits below

 The kth -quantile tells us the value for which % of our sample
sits below

q = 2

q = 3

q = 4

q = 10

q q × 100k
q
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This sounds a lot like percentiles...

Percentiles are simply quantiles for q=100!

We hear about percentiles in daily life more often, and in practice people
often use "percentiles" language for the more general term "quantiles".

Examples of percentiles:

At 5'3", my height is the 40th percentile of the U.S. adult female height
distribution  40% of American female adults are shorter than me
At 36 lbs, my son is the 90th percentile of U.S. male 3 year old weight
distribution  90% of American male 3 year olds are lighter than my
son

Exercise: Draw approximately where you think the 1st, 10th, 20th,
50th, 80th, 90th and 99th percentiles would be on a normal
distribution.

→

→
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Quantile-Quantile (Q-Q) Plots

Histograms plot the frequency of our data within bins

geom_histogram()  with ggplot2  in R

Q-Q plots plot the quantiles of our data against quantiles
of some theoretical distribution

geom_qq()  with ggplot2  in R

This is helpful if we want to ask things like, are my data
approximately normally distributed?

Straight line on a Q-Q plot indicates sample and theoretical distributions
match
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Q-Q plot: Example

Annual �ow of the river Nile at Aswan, 1871-1970, in 10^8
m^3
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Q-Q plot: Example

Monthly mean relative sunspot numbers, 1749-1983

We will continually return to the normal distribution. Always a
good idea to check whether your data look normally distributed
or not!
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Which statistics are robust to outliers?
Consider a sample of loans from a bank, each with an associated
interest rate .

The highest value in the data is somewhat of an outlier, .

Source: IMS, Ch. 5.6

x

x̄ = 11.57

s = 5.05

xmax = 26.3
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Which statistics are robust to outliers?
Consider a sample of loans from a bank, each with an associated
interest rate.

The highest value in the data is somewhat of an outlier, .

How do summary statistics change if we modify this outlier?

x̄ = 11.57

s = 5.05

xmax = 26.3
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Law of large numbersLaw of large numbers
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Big data
You probably have intuition that a larger sample is better than a smaller
one...but why?

Suppose we have a random sample of some size . How well does 
approximate ?

Law of large numbers:

n x̄

μ

x̄ → μ as n → ∞
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Next up

Relationships between variables

Intro to ordinary least squares

Summarizing categorical and numerical data in R
(Thursday lab)
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Slides created via the R package xaringan.

Some slide components were borrowed from Ed Rubin's awesome course
materials.
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https://github.com/yihui/xaringan
https://github.com/edrubin/EC421S20

