Summarizing data

EDS 222

Tamma Carleton
Fall 2023

Today

Types of variables

- Categorical, numerical, ordinal, ...

Probability density functions

- Definitions, the normal pdf, skew

Summary statistics

- Central tendency and spread, quantiles, outliers

Law of large numbers

- How big does my sample need to be?

Assignment \#1 check-in: How's it going?

Reminder: OH Thursdays, Pine Room, 3:30-4:30pm

Types of variables

Types of variables

Numerical variables

Object class numeric in R

- Can take on a wide range of possible values
- Makes sense to add, subtract, multiply, etc.
- Examples:
- Height of the tree canopy across the Amazon
- Length of Atlantic swordfish
- Daily average temperature

Discrete numerical variables take on only a limited set of values, often counts (e.g., population)

Continuous numerical variables: can take on infinite values within a range (e.g., arsenic concentration in groundwater)

Types of variables

Numerical variables

DISCRETE

observations can only exist
at LImited values, often COUNTS.

Types of variables

Categorical variables

Object class factor in R

- Values correspond to one of a fixed number of categories
- Possible values are called levels
- Examples:
- Land use type
- Species of tree
- Age group (e.g., <15, 15-64, 65+) (watch out! continuous numerical data can often be stored as a categorical variable!)

Types of variables

Categorical variables

Nominal variables are unordered descriptions
Ordinal variables are categories with a natural ordering
Binary variables only take on 0 or 1

Types of variables

Categorical variables

@allison_horst

Source: Allison Horst

Probability density functions

Probability density functions

Remember: when we do statistics, we use statistics from a sample to learn about parameters of a population.

A variable is a representation of something we care about in a population (e.g., nitrate concentration of groundwater).

Many parameters we care about tell us something about what values we might see for our variable in the population (e.g., average nitrate concentrations).

Probability density functions are mathematical functions that tell us: how likely are we to see values of a given range?

Probability density functions

Probability density functions are mathematical functions that tell us: how likely are we to see values of a given range?

Probability density functions

For continuous variables, the probability density function (p.d.f.) tells us the probability that a variable falls within a given range of values.

Formally: The p.d.f. of a continuous variable X with support (i.e., range of possible values) S is an integrable function $f(x)$ satisfying:

1. $f(x)$ is positive for all x in S
2. The area under the curve $f(x)$ over the entire support S is equal to 1 :

$$
\int_{S} f(x) d x=1
$$

3. The probability that x falls between A and B is:

$$
\operatorname{Pr}(A \leq x \leq B)=\int_{A}^{B} f(x) d x
$$

Why isn't this simpler?

Q: Why can't I just interpret $f(x)$ as the probability that $X=x$?
A: Because continuous variables have ∞ possible values...the probability that your variable X exactly equals x is zero!

Luckily, for discrete variables it is this simple!

For discrete variable x, the probability mass function (p.m.f.) $f(x)$ tells us the probability that $X=x$.

Formally: The p.m.f. of a discrete variable X with support (i.e., range of possible values) S is a function $f(x)$ satisfying:

1. $P(X=x)=f(x)>0$ for all x in support S
2. $\sum_{x \in S} f(x)=1$
3. $P(A \leq x \leq B)=\sum_{x=A}^{x=B} f(x)$

Probability density functions (visual)

P.d.f's help us characterize the distribution of our population. The most common/famous ones get names (e.g., normal, Gamma, t, \ldots)

Let's look at a normal distribution*

The probability this normally distributed variable takes on a value between -2 and 0 is shown in pink:

[^0]
Probability density functions (visual)

Let's look at a normal distribution*

The probability this normally distributed variable takes on a value between
-2 and 2 is shown in pink:

[^1]
The normal distribution

There are infinite different normal distributions. They all have the following p.d.f:

$$
f(x)=\frac{1}{\sigma \sqrt{2 \pi}} e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)}
$$

where μ is the mean (i.e., average) and σ is the standard deviation (will define soon). μ and σ are parameters describing the population p.d.f.

Shapes of probability distributions

Key terms to describe p.d.f.'s:

1. A distribution can have skew (e.g., log-normal)
2. A distribution can have a long right tail or left tail (e.g., fat-tailed climate sensitivity distributions!)
3. A distribution can be symmetric
4. A distribution can be unimodal, bimodal, or multimodal

Shapes of probability distributions

Key terms to describe p.d.f.'s:

1. A distribution can have skew (e.g., log-normal)

- Skew means the distribution is asymmetric around its mean

2. A distribution can have a long right tail or left tail (e.g., fat-tailed climate sensitivity distributions!)

- Long tails is a general term implying there is a lot of mass far away from the mean (not a precise defn.)

3. A distribution can be symmetric

- The distribution is symmetric around its mean (Q: what does this imply about skew?)

4. A distribution can be unimodal, bimodal, or multimodal

- A distribution with one (unimodal), two (bimodal), or more (multimodal) "peaks"

Shapes of probability distributions

Skew with a long right tail
(log-normal sample distribution)

Shapes of probability distributions

Uni-, bi-, and multi-modal
(How many "peaks" do you see?)

20

Summary statistics

Describing random variables

A probability density function describes a population
As we learned last week, we rarely have a census so we rarely can directly describe the p.d.f. itself.

Instead, we use statistics from a sample to estimate parameters of the population. Randomness in sampling means we call the variables in our sample "random variables"

Measures of central tendency

We often begin to describe a distribution using measures of central tendency (i.e., measures of the "middle").

Three are most common:

1. Mean
2. Median
3. Mode

Mean = expected value = average

In a population, the mean is defined as:

$$
\mathrm{E}[X]=\mu=\int_{S} x f(x) d x
$$

In our sample, we compute the mean as:

$$
\bar{x}=\frac{1}{n} \sum_{i \in n} x_{i}
$$

We use \bar{x} as an estimate of the parameter of interest, μ.

Median = middle value

In a population, the median is defined as the value m for which half the distribution falls below m and half above m :

$$
P(X \leq m)=\int_{-\infty}^{m} f(x) d x=\frac{1}{2}=\int_{m}^{\infty} f(x) d x=P(X \geq m)
$$

In our sample, we order all our data from lowest to highest and then compute the median as:

- n even? median = mean of the middle two values
- n odd? median = middle value

Median and mean are not always close

Non-normal distribution \Longrightarrow median and mean can diverge substantially

Mode $=$ most frequent value

The mode is simply the most frequently observed value
This is much more useful for discrete data (ask yourself why!)

Measures of spread

Central tendency only gets us so far...we also need measures of spread.

1. Range (easy: min to max of your data)
2. Variance
3. Standard deviation
4. Quantiles

Measures of spread: Variance

Answers the question, how far are observations from the mean, on average?
In the population:

$$
\operatorname{Var}(X)=\mathrm{E}\left[(X-\mu)^{2}\right]=\sigma^{2}=\int_{\mathrm{S}}(x-\mu)^{2} f(x) d x
$$

In the sample:

$$
s^{2}=\frac{\sum_{i \in n}\left(x_{i}-\bar{x}\right)^{2}}{n-1}
$$

Q: Why do we divide by $n-1$?
A: Lots of math to prove it (see here), but trust me, s^{2} will be a biased estimate of σ^{2} if you divide by n !

Measures of spread: Standard deviation

Just the square root of the variance!
In the population:

$$
S D(X)=\sqrt{\mathrm{E}\left[(X-\mu)^{2}\right]}=\sigma=\sqrt{\int_{\mathrm{S}}(x-\mu)^{2} f(x) d x}
$$

In the sample:

$$
s=\sqrt{\frac{1}{n-1} \sum_{i \in n}\left(x_{i}-\bar{x}\right)^{2}}
$$

Units of standard deviation: units of the random variable

Some helpful rules

$$
\begin{gathered}
\mathrm{E}[a X+b]=a \mathrm{E}[X]+b \\
\mathrm{E}[X+Y]=\mathrm{E}[X]+\mathrm{E}[Y] \\
\operatorname{var}(X)=\mathrm{E}\left[X^{2}\right]-(\mathrm{E}[X])^{2} \\
\operatorname{var}(a X+b)=a^{2} \operatorname{var}(X)
\end{gathered}
$$

Variance, visually

Pink: Low variance/standard deviation $\sigma=1$
Green: High variance/standard deviation $\sigma=2$

Variance, visually

Back to the normal distributions

- Changes in the mean shift the distribution right to left
- Changes in the standard deviation stretch the distribution out (or shrink it in)

Measures of spread: Quantiles

Quantiles are cut points of a probability distribution

In our sample, quantiles are cut points of our sample data

How do we compute them?

- We order our data from lowest to highest
- For the q-quantile, we divide these ordered data into q equal sized subsamples
- The value at the edge of the k th subsample is the k th q-quantile - This tells you the value below which $\frac{k}{q}$ of the data lie Question: How many q-quantiles are there for any given q ?

Answer: There are $q-1$ of the q-quantiles

Example: The normal distribution

Common quantiles have names you have head of, such as quartiles for $q=4$:

Quartiles of the normal distribution

Interpretation: Q1 = first quartile, Q2 = second quartile, etc. The area below the red curve is the same below Q1 as it is between Q1 and Q2, between Q2 and Q3, and above Q3.

The Inter-quartile Range

The inter-quartile range (often called the $I Q R$) is the 3rd quartile minus the 1 st quartile (i.e., the range of the "middle" 50% of the data)

This is another measure of variability, like variance. Larger IQR = more variable data.

Often used as the edges of the box in a boxplot (we will do this in Lab!):

Common quantiles and interpretation

Common quantiles have names you have heard of:

- $q=2$ Median tells us the value for which 50% of our sample sits below (and 50\% above)
- $q=3$ Terciles: tell us the values for which 33.33% (1st tercile) and 66.66\% (2nd tercile) of our sample sits below
- $q=4$ Quartiles: tell us the values for which 25% (1st quartile), 50% (2nd quartile), and 75% (3rd quartile) of our sample sits below
- $q=10$ Deciles: tell us the values for which 10% (1st decile), ..., 50\% (5th decile), ..., and 90% (9th decile) of our sample sits below
q The kth q-quantile tells us the value for which $\frac{k}{q} \times 100 \%$ of our sample sits below

This sounds a lot like percentiles...

Percentiles are simply quantiles for $\mathrm{q}=100$!

We hear about percentiles in daily life more often, and in practice people often use "percentiles" language for the more general term "quantiles".

Examples of percentiles:

- At 5'3", my height is the 40th percentile of the U.S. adult female height distribution $\rightarrow 40 \%$ of American female adults are shorter than me
- At $36 \mathrm{lbs}, \mathrm{my}$ son is the 90th percentile of U.S. male 3 year old weight distribution $\rightarrow 90 \%$ of American male 3 year olds are lighter than my son

Exercise: Draw approximately where you think the 1st, 10th, 20th, 50th, 80th, 90th and 99th percentiles would be on a normal distribution.

Quantile-Quantile (Q-Q) Plots

Histograms plot the frequency of our data within bins

- geom_histogram() with ggplot2 in R

Q-Q plots plot the quantiles of our data against quantiles of some theoretical distribution

- geom_qq() with ggplot2 in R

This is helpful if we want to ask things like, are my data approximately normally distributed?

Straight line on a Q-Q plot indicates sample and theoretical distributions match

Q-Q plot: Example

Annual flow of the river Nile at Aswan, 1871-1970, in $10^{\wedge} 8$ $\mathrm{m}^{\wedge} 3$

Q-Q plot: Example

Monthly mean relative sunspot numbers, 1749-1983

We will continually return to the normal distribution. Always a good idea to check whether your data look normally distributed or not!

Which statistics are robust to outliers?

- Consider a sample of loans from a bank, each with an associated interest rate x.

$$
\begin{aligned}
& \text { ○ } \bar{x}=11.57 \\
& \text { ○ } s=5.05
\end{aligned}
$$

- The highest value in the data is somewhat of an outlier, $x_{\max }=26.3$.

Which statistics are robust to outliers?

- Consider a sample of loans from a bank, each with an associated interest rate.

$$
\begin{aligned}
& \circ \bar{x}=11.57 \\
& \circ s=5.05
\end{aligned}
$$

- The highest value in the data is somewhat of an outlier, $x_{\max }=26.3$.
- How do summary statistics change if we modify this outlier?

	Robust			Not robust	
Scenario	Median	IQR		Mean	SD
Original data	9.93	5.75	11.6	5.05	
Move 26.3% to 15%	9.93	5.75	11.3	4.61	
Move 26.3% to 35%	9.93	5.75	11.7	5.68	

Table 5.4: A comparison of how the median, IQR, mean, and standard deviation change as the value of

Law of large numbers

Big data

You probably have intuition that a larger sample is better than a smaller one...but why?

Suppose we have a random sample of some size n. How well does \bar{x} approximate μ ?

Law of large numbers:

$$
\bar{x} \rightarrow \mu \text { as } n \rightarrow \infty
$$

Next up

Relationships between variables
Intro to ordinary least squares
Summarizing categorical and numerical data in R (Thursday lab)

Slides created via the R package xaringan.
Some slide components were borrowed from Ed Rubin's awesome course materials.

[^0]: *This distribution happens to be what's called "standard" normal. We'll get into the weeds later!

[^1]: *Yep, still a "standard" normal. Details later.

