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Today
Relationships between variables

Covariance, correlation

Ordinary Least Squares (OLS)

Finding the "best �t" line, properties of OLS, assumptions of OLS

Interpreting OLS output

Slopes, intercepts, unit conversions
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Announcements/check-in
Assignment #1: Grading next week, some review in Discussion Section

Assignment #2: To be posted this week, due 10/20, 5pm

Flag on IMS and linear regression
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Relationships between variablesRelationships between variables
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Two random variables

Often we are interested in the relationship between two (or
more) random variables.

E.g., heat waves and heart attacks, nitrogen fertilizer and water pollution

Note: these are simulated data. But the violence-temperature link is real!
See here for a summary of research. 5 / 69

https://www.annualreviews.org/doi/abs/10.1146/annurev-economics-080614-115430


Two random variables

What metrics can we use to characterize the relationship
between two variables?

There are lots. But let's start with...

1. Covariance

2. Correlation
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Covariance
Variance indicates how dispersed a distribution is (average squared
deviation from the mean)

Covariance is a measure of the joint distribution of two variables

Higher values of  correspond to higher values of   positive
covariance
Higher values of  correspond to lower values of   negative
covariance

In the population:

In the sample:

X Y →

X Y →

Cov(X, Y ) = E[(X − μx)(Y − μy)] = E[XY ] − μxμy

sxy =
n

∑
i=1

(xi − x̄)(yi − ȳ)
1

n − 1 7 / 69



Covariance
Variance indicates how dispersed a distribution is (average squared
deviation from the mean)

Covariance is a measure of the joint distribution of two variables

Higher values of  correspond to higher values of   positive
covariance
Higher values of  correspond to lower values of   negative
covariance

The sign of  tells us the sign of the linear relationship between  and
, but the magnitude depends on the units of the variables and is

therefore dif�cult to interpret

X Y →

X Y →

sxy X

Y
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Covariance

Example: positive covariance
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Covariance

Example: zero covariance
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Covariance

Example: Negative covariance

How do I interpret these units?! Hard to compare across these three
graphs...
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Correlation
Correlation allows us to normalize covariance into interpretable units

The sign still tells us about the nature of the (linear) relationship between
two variables:

positive covariance  positive correlation (and vice versa)

But now, the magnitude is interpretable:

Ranges from -1 to 1, with magnitude indicating strength of the
relationship

→
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Correlation
Correlation allows us to normalize covariance into interpretable units

In the population:

In the sample:

Note: = population variance of ;  = sample estimate of variance

ρX,Y = corr(X, Y ) =
cov(X, Y )

σxσy

rx,y = =
n

∑
i=1

(xi − x̄)(yi − ȳ)
sx,y

sxsy

1

(n − 1)sxsy

σx x sx

Want to prove that  ? Key result: Cauchy-Schwarz Inequality tells us that
.

−1 ≤ rx,y ≤ 1

|cov(X, Y )|
2

≤ var(X)var(Y )
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Correlation

Example: Strong positive correlation
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Correlation

Example: zero correlation
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Correlation

Example: Moderate negative correlation
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Ordinary Least SquaresOrdinary Least Squares
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Linear regression
Covariance and correlation give us a single summary of the strength of the
relationship between two random variables  and ...

...but we want to know more!

In particular, we are often interested in the linear relationship between 
and :

In the population:

Can we use our sample to estimate  (the intercept) and
 (the slope)?

(Call these estimates  and , respectively)

Y X

X

Y

y = β0 + β1x + u

β0

β1

β̂0 β̂1
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Finding a "best �t" line
Consider some sample data.
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Finding a "best �t" line

For any line  (ŷ = β̂0 + β̂1x) ∣
∣∣

20 / 69



Finding a "best �t" line

For any line , we can calculate errors:  (ŷ = β̂0 + β̂1x) ei = yi − ŷ i
∣
∣∣
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Finding a "best �t" line

For any line , we can calculate errors:  (ŷ = β̂0 + β̂1x) ei = yi − ŷ i
∣
∣∣
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Finding a "best �t" line

For any line , we can calculate errors:  (ŷ = β̂0 + β̂1x) ei = yi − ŷ i
∣
∣∣
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Ordinary Least Squares

OLS chooses a line that minimizes the sum of squared
errors (SSE):

Where  indicates one observation in our data. In other words, OLS gives us
a combination of  and  that minimizes the SSE.

Now you see where "least squares" comes from!

In R:

library(stats)

lm(y ~ x, my_data)

Note: SSE is also called "sum of squared residuals" or SSR

SSE = ∑
i

e2
i = ∑

i

(yi − ŷ i)
2 = ∑

i

(yi − β̂0 − β̂1xi)
2

i

β̂0 β̂1
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Ordinary Least Squares

SSE squares the errors : bigger errors get bigger penalties. (∑ e2
i )

∣
∣∣
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Ordinary Least Squares

The OLS estimate is the combination of  and  that minimizes SSE. β̂0 β̂1
∣
∣∣
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OLS, formally
In simple linear regression, the OLS estimator comes from choosing the 
and  that minimize the sum of squared errors (SSE), i.e.,

but we already know . Now use the de�nitions of  and .

this expands to:

β̂0

β̂1

min
β̂0, β̂1

SSE

SSE = ∑i e2
i ei ŷ

e2
i = (yi − ŷ i)

2
= (yi − β̂0 − β̂1xi)

2

e2
i = y2

i − 2yiβ̂0 − 2yiβ̂1xi + β̂
2

0 + 2β̂0β̂1xi + β̂
2

1x2
i
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OLS, formally
Choose the  and  that minimize the sum of squared errors (SSE), i.e.,

Derivation: Minimizing a multivariate function requires (1) �rst derivatives
equal zero (the 1st-order conditions) and (2) second-order conditions
(concavity).

See extra slides if you want the full derivation. Basically, we take the �rst
derivatives of the SSE above with respect to  and , set them equal to
zero, and solve for  and .

β̂0 β̂1

min
β̂0, β̂1

∑
i

e2
i

β̂0 β̂1

β̂0 β̂1
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OLS, formally
The OLS estimator for the slope is:

and the intercept:

Note that the expression for  can be rearranged to show us that our
regression line always passes through the sample mean of  and .

β̂1 = =
∑i(xi − ¯̄x̄)(yi − ¯̄̄y)

∑i(xi − ¯̄x̄)2

cov(x, y)

var(x)

β̂0 = ¯̄̄y − β̂1
¯̄x̄

β̂0

x y
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Let's collect some de�nitions
True population relationship:

Estimated sample relationship:

Dependent variable = regressand = 
Independent variable = explanatory variable = regressor = 
Residual = sample error =  (for one observation , sample error is

)
Estimated intercept coef�cient = 
Estimated slope coef�cient = 

y = β0 + β1x + u

ŷ = β̂0 + β̂1x + e

y

x

y − ŷ i

yi − ŷ i

β̂0

β̂1
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Why choose the OLS line?

There are many possible ways to de�ne a "best �t" linear
relationship. For example:

Least absolute deviations: minimize 
Ridge regression: minimize 

...

∑i |yi − ŷ i|

∑i [(yi − ŷ i)
2 + λ∑k β̂

2

k]
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Why choose the OLS line?

There are many possible ways to de�ne a "best �t" linear
relationship.

So why do we often rely on OLS?

Under a key set of assumptions, OLS satis�es some very desirable
properties that most statisticians, economists, political scientists put
emphasis on

However, you will see many other linear (and nonlinear) estimators in
machine learning

What estimator you use depends on what the goal of your analysis is,
but OLS is the best option a LOT of the time
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Why choose the OLS line?

Under key assumptions, OLS satis�es two
desirable properties:

OLS is unbiased.
OLS has the minimum variance of all unbiased linear estimators.

Let's dig into each of these for a moment so you can appreciate how
amazing OLS is.
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OLS property #1: Unbiasedness

Under a key set of assumptions (we'll get into these in a
few slides), OLS is unbiased

Unbiasedness:

On average (after many samples), does the estimator tend toward the true
population value?

More formally: The mean of estimator's distribution equals the population
parameter it estimates:

Bias
β
(β̂) = E[β̂]− β
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OLS property #1: Unbiasedness

Under a key set of assumptions (we'll get into these in a
few slides), OLS is unbiased

Unbiasedness:

On average (after many samples), does the estimator tend toward the true
population value?

 You should think about the distribution of  values as the distribution
of regression results you would get if you could draw many random
samples from the population and generate a new  every time.

 In two weeks we'll talk a lot more about uncertainty in and distributions
of estimators like .

→ β̂

β̂

→

β̂
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Unbiased estimator: Biased estimator: 

OLS property #1: Unbiasedness

Distributions show probability density function of  estimates recovered
from many different randomly drawn samples.

E[β̂] = β E[β̂] ≠ β

β̂
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OLS property #2: Lowest variance

Under a key set of assumptions (again, let's wait a couple
slides), OLS is the estimator with the lowest variance

Lowest variance:

Just as we discussed when de�ning summary statistics, the central
tendencies (means) of distributions are not the only things that matter. We
also care about the variance of an estimator.

Lower variance estimators mean we get estimates closer to the mean in
each sample.

Var(β̂) = E[(β̂ − E[β̂])
2

]
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OLS property #2: Lowest variance

Under a key set of assumptions (again, let's wait a couple
slides), OLS is the estimator with the lowest variance

Lowest variance:

Just as we discussed when de�ning summary statistics, the central
tendencies (means) of distributions are not the only things that matter. We
also care about the variance of an estimator.

 Again, think about the distribution of  values as the distribution of
regression results you would get if you could draw many random samples
from the population and generate a new  every time.

→ β̂

β̂
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OLS property #2: Lowest variance
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Properties of OLS
Property 1: Bias.

Property 2: Variance.

Subtlety: The bias-variance tradeoff.

Should we be willing to take a bit of bias to reduce the variance?

In much of statistics, we choose unbiased estimators. But other disciplines
(especially computer science) will choose estimators that sacri�ce some
bias in exchange for lower variance.

You'll learn more about these estimators (e.g., ridge regression) in EDS 232
👀
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The bias-variance tradeoff.
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OLS: Assumptions
These very nice properties depend on a key set of assumptions:

�. The population relationship is linear in parameters with an additive
disturbance.

�. The  variable is exogenous, i.e., .

I.e., is there no other variable correlated with  that also affects 
You will talk a lot more about this in EDS 241 👀

�. The  variable has variation (and if there are multiple explanatory
variables, they are not perfectly collinear)

Recall,  is in the denominator of the OLS slope coef�cient
estimator!

X E[u ∣ X] = 0

X Y

X

var(x)
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OLS: Assumptions
These very nice properties depend on a key set of assumptions:

�. The population relationship is linear in parameters with an additive
disturbance.

�. Our  variable is exogenous, i.e., .

�. The  variable has variation.

�. The population disturbance  is independently and identically
distributed as a normal random variable with mean zero 
and variance  (i.e., )

Independently distributed and mean zero jointly imply 
for any 
Constant variance means errors cannot vary with  (this is called
"homoskedasticity")

X E[u ∣ X] = 0

X

u

(E[u] = 0)

σ2
E[u2] = σ2

E[uiuj] = 0

i ≠ j

X
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OLS: Assumptions
Different assumptions guarantee different properties:

Assumptions (1), (2), and (3) make OLS unbiased
Assumption (4) gives us an unbiased estimator for the variance of our
OLS estimator (we will talk more about this when covering inference in
a couple weeks)

We will discuss the many ways real life may violate these assumptions. For
instance:

Non-linear relationships in our parameters/disturbances (or
misspeci�cation)  e.g., logistic regression
Disturbances that are not identically distributed and/or not
independent  lectures on inference
Violations of exogeneity (especially omitted-variable bias)  mostly
covered in EDS 241

→

→

→
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OLS: Assumptions

Q: Can we test these assumptions?

A: Some of them.

Assumption 1: Linear in parameters.

You can look at your data to see if this might be reasonable.
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OLS: Assumptions

Q: Can we test these assumptions?

A: Some of them.

Assumption 1: Linear in parameters.

You can look at your data to see if this might be reasonable.

Note: this assumption does not require your model to be linear in ! As
we discuss later, nonlinear relationships in  can be easily
accommodated with OLS:

This equation was estimated using OLS to give the nonlinear relationship
on the next slide.

X

X

y = β0 + β1x + β2x2 + ε
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OLS: Assumptions

Q: Can we test these assumptions?

A: Some of them.

Assumption 1: Linear in parameters.

You can look at your data to see if this might be reasonable.
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OLS: Assumptions

Q: Can we test these assumptions?

A: Some of them.

Assumption 1: Linear in parameters.

Example of a population relationship that is not linear in parameters:

Y = eβ0+β1X+u
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OLS: Assumptions

Q: Can we test these assumptions?

A: Some of them.

Assumption 2: Exogeneity

This is not a testable assumption!

There are a lot of methods designed to probe this assumption, but it's
fundamentally untestable since there are in�nite possible correlates of 
and  that are unobservable to the researcher.

In general, you should always think about what is in  that may be
correlated with .

E[u ∣ X] = 0

X

Y

u

X
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OLS: Assumptions

Q: Can we test these assumptions?

A: Some of them.

Assumption 3:  has variation.

This is very easy to test:

X
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OLS: Assumptions

Q: Can we test these assumptions?

A: Some of them.

Assumption 4: The population disturbances  are independently and
identically distributed as normal random variables with mean zero and
variance 

Use the residuals from your regression to investigate this assumption

Step 1: Run linear regression

Step 2: Generate residuals

ui

σ2

yi = β0 + β1xi + εi

ei = yi − ŷ i
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OLS: Assumptions

Q: Can we test these assumptions?

A: Some of them.

Assumption 4: The population disturbances  are independently and
identically distributed as normal random variables with mean zero and
variance 

Use the residuals from your regression to investigate this assumption

Step 3: Plot and investigate residuals [draw these examples]

histogram (are they normal?)
plot of  against  (are they uncorrelated? does the variance depend
on ?)

ui

σ2

ei X

X
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Interpreting regression resultsInterpreting regression results
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Interpreting OLS results
Example: Ozone increases due to temperature (NYC)
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Interpreting OLS results
Example: Ozone increases due to temperature (NYC)

We can use lm(y~x, my_data)  in R to run a linear regression of  on ,
including a constant term.

mod �� lm(Ozone ~ Temp, data=airquality)

y x
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Interpreting OLS results
Example: Ozone increases due to temperature (NYC)

summary()  then lets us see the regression results.

How do we interpret these??
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Interpreting OLS results
summary(mod)

#> 
#> Call:
#> lm(formula = Ozone ~ Temp, data = airquality)
#> 
#> Residuals:
#>     Min      1Q  Median      3Q     Max 
#> -40.729 -17.409  -0.587  11.306 118.271 
#> 
#> Coefficients:
#>              Estimate Std. Error t value Pr(>|t|)    
#> (Intercept) -146.9955    18.2872  -8.038 9.37e-13 ���
#> Temp           2.4287     0.2331  10.418  < 2e-16 ���
#> ���
#> Signif. codes:  0 '���' 0.001 '��' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#> 
#> Residual standard error: 23.71 on 114 degrees of freedom
#>   (37 observations deleted due to missingness)
#> Multiple R-squared:  0.4877,    Adjusted R-squared:  0.4832 
#> F-statistic: 108.5 on 1 and 114 DF,  p�value: < 2.2e-16
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Interpreting OLS results

Slope: Change in  for a one unit change in .

Here: On average, we expect to see ozone increase by 2.4 ppb for
each 1 degree F increase in temperature.

Intercept: Level of  when .

Here: On average, we expect Ozone to be -147 ppb when
temperature is 0 degrees F.
CAREFUL with extrapolation! This doesn't even make sense!

Ozonei = β0 + β1Tempi + εi

y x

y x = 0
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Interpreting OLS results

Standard error, t-value, and Pr(>t): These all concern uncertainty
around our parameter estimates. We will tackle these fully after the
midterm.

Ozonei = β0 + β1Tempi + εi
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Interpreting OLS results
Visualizing our predicted model using geom_smooth()

Where is ? Where is ?β̂0 β̂1
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Interpreting OLS results

Units matter!

airquality$TempC �� (airquality$Temp - 32)*5/9
summary(lm(Ozone~TempC, data=airquality))

#> 
#> Call:
#> lm(formula = Ozone ~ TempC, data = airquality)
#> 
#> Residuals:
#>     Min      1Q  Median      3Q     Max 
#> -40.729 -17.409  -0.587  11.306 118.271 
#> 
#> Coefficients:
#>             Estimate Std. Error t value Pr(>|t|)    
#> (Intercept) -69.2770    10.9182  -6.345 4.65e-09 ���
#> TempC         4.3717     0.4196  10.418  < 2e-16 ���
#> ���
#> Signif. codes:  0 '���' 0.001 '��' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#> 
#> Residual standard error: 23.71 on 114 degrees of freedom
#>   (37 observations deleted due to missingness)
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Slides created via the R package xaringan.

Some slides and slide components were borrowed from Ed Rubin's
awesome course materials.
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https://github.com/yihui/xaringan
https://github.com/edrubin/EC421S20


Extra slidesExtra slides
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OLS, formally
In simple linear regression, the OLS estimator comes from choosing the 
and  that minimize the sum of squared errors (SSE), i.e.,

but we already know . Now use the de�nitions of  and .

this expands to:

Recall: Minimizing a multivariate function requires (1) �rst derivatives equal
zero (the 1st-order conditions) and (2) second-order conditions (concavity).

β̂0

β̂1

min
β̂0, β̂1

SSE

SSE = ∑i e2
i ei ŷ

e2
i = (yi − ŷ i)

2
= (yi − β̂0 − β̂1xi)

2

e2
i = y2

i − 2yiβ̂0 − 2yiβ̂1xi + β̂
2

0 + 2β̂0β̂1xi + β̂
2

1x2
i
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OLS, formally
We're getting close. We need to minimize SSE. We've showed how SSE
relates to our sample (our data:  and ) and our estimates (i.e.,  and ).

For the �rst-order conditions of minimization, we now take the �rst derivate
of SSE with respect to  and .

where  and  are sample means of  and  (size ).

x y β̂0 β̂1

SSE = ∑
i

e2
i = ∑

i

(y2
i − 2yiβ̂0 − 2yiβ̂1xi + β̂

2

0 + 2β̂0β̂1xi + β̂
2

1x2
i)

β̂0 β̂1

= ∑
i

(2β̂0 + 2β̂1xi − 2yi) = 2nβ̂0 + 2β̂1 ∑
i

xi − 2∑
i

yi  = 2nβ̂0 +
∂SSE

∂β̂0

¯̄x̄ =
∑xi

n
¯̄̄y =

∑ yi

n x y n
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OLS, formally
The �rst-order conditions state that the derivatives are equal to zero, so:

which implies

Now for .

= 2nβ̂0 + 2nβ̂1
¯̄x̄ − 2n¯̄̄y = 0

∂SSE

∂β̂0

β̂0 = ¯̄̄y − β̂1
¯̄x̄

β̂1
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OLS, formally
Take the derivative of SSE with respect to 

set it equal to zero (�rst-order conditions, again)

and substitute in our relationship for , i.e., . Thus,

β̂1

\dfrac{\partial \text{SSE}}{\partial \hat{\beta}_1} &= \sum_i \left( 2 \hat{\beta}_0 

= 2nβ̂0
¯̄x̄ + 2β̂1 ∑

i

x2
i − 2∑

i

yixi

= 2nβ̂0
¯̄x̄ + 2β̂1 ∑

i

x2
i − 2∑

i

yixi = 0
∂SSE

∂β̂1

β̂0 β̂0 = ¯̄̄y − β̂1
¯̄x̄

2n(¯̄̄y − β̂1
¯̄x̄) ¯̄x̄ + 2β̂1 ∑

i

x2
i − 2∑

i

yixi = 0
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OLS, formally
Continuing from the last slide

we multiply out

2n(¯̄̄y − β̂1
¯̄x̄) ¯̄x̄ + 2β̂1 ∑

i

x2
i − 2∑

i

yixi = 0

2n¯̄̄y ¯̄x̄ − 2nβ̂1
¯̄x̄

2
+ 2β̂1 ∑

i

x2
i − 2∑

i

yixi = 0

⟹ 2β̂1 (∑
i

x2
i − n¯̄x̄

2
) = 2∑

i

yixi − 2n¯̄̄y ¯̄x̄

⟹ β̂1 = =
∑i yixi − 2n¯̄̄y ¯̄x̄

∑i x2
i − n¯̄x̄

2

∑i(xi − ¯̄x̄)(yi − ¯̄̄y)

∑i(xi − ¯̄x̄)2
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OLS, formally
Done!

We now have (lovely) OLS estimators for the slope

and the intercept

And now you know where the least squares part of ordinary least squares
comes from. 🎊

β̂1 =
∑i(xi − ¯̄x̄)(yi − ¯̄̄y)

∑i(xi − ¯̄x̄)2

β̂0 = ¯̄̄y − β̂1
¯̄x̄
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