Ordinary Least Squares, continued

EDS 222

Tamma Carleton Fall 2023

Announcements/check-in

- Assignment #1: Grades posted
 - Please ensure your .html file is compiled and pushed to GitHub
 - Please do not push data to GitHub (generally a good rule to follow)
 - $\circ~$ Sandy to go over some areas of confusion

Announcements/check-in

- Assignment #1: Grades posted
 - Please ensure your .html file is compiled and pushed to GitHub
 - Please do not push data to GitHub (generally a good rule to follow)
 - $\circ~$ Sandy to go over some areas of confusion
- Assignment #2: Due 10/20, 5pm

Announcements/check-in

- Assignment #1: Grades posted
 - Please ensure your .html file is compiled and pushed to GitHub
 - Please do not push data to GitHub (generally a good rule to follow)
 - $\circ~$ Sandy to go over some areas of confusion
- Assignment #2: Due 10/20, 5pm
- Reiteration of COVID/illness policy

Notes on OLS

• Outliers, missing data

Notes on OLS

• Outliers, missing data

Measures of model fit

- Coefficient of variation ${\cal R}^2$

Notes on OLS

• Outliers, missing data

Measures of model fit

- Coefficient of variation ${\cal R}^2$

Categorical variables

• In **R**, interpretation

Notes on OLS

• Outliers, missing data

Measures of model fit

- Coefficient of variation ${\cal R}^2$

Categorical variables

• In **R**, interpretation

Multiple linear regression

• Adding independent variables, interpretation of results

Notes on OLS

Outliers

Because OLS minimizes the sum of the **squared** errors, outliers can play a large role in our estimates.

Common responses

- Remove the outliers from the dataset
- Replace outliers with the 99th percentile of their variable (*winsorize*)
- Take the log of the variable (This lowers the leverage of large values -- why?)
- Do nothing. Outliers are not always bad. Some people are "far" from the average. It may not make sense to try to change this variation.

Missing data

Similarly, missing data can affect your results.

R doesn't know how to deal with a missing observation.

1 + 2 + 3 + NA + 5

#> [1] NA

If you run a regression[†] with missing values, **R** drops the observations missing those values.

If the observations are missing in a nonrandom way, a random sample may end up nonrandom.

Measures of model fit

Measures of model fit

Goal: quantify how "well" your regression model fits the data

General idea: Larger variance in residuals suggests our model isn't very predictive

Measures of model fit

Goal: quantify how "well" your regression model fits the data

General idea: Larger variance in residuals suggests our model isn't very predictive

• We already learned one measure of the strength of a linear relationship: correlation, $m{r}$

- We already learned one measure of the strength of a linear relationship: correlation, $m{r}$
- In OLS, we often rely on R^2 , the **coefficient of determination**. In simple linear regression, this is simply the square of the correlation.
- Interpretation of R^2 : share of the variance in y that is explained by your regression model

- We already learned one measure of the strength of a linear relationship: correlation, $m{r}$
- In OLS, we often rely on R^2 , the **coefficient of determination**. In simple linear regression, this is simply the square of the correlation.
- Interpretation of R^2 : share of the variance in y that is explained by your regression model

$$SSR = ext{sum of squared residuals} = \sum_i (y_i - \hat{y}_i)^2 = \sum_i e_i^2$$
 $SST = ext{total sum of squares} = \sum_i (y_i - ar{y})^2$ $R^2 = 1 - rac{SSR}{SST} = 1 - rac{\sum_i e_i^2}{\sum_i (y_i - ar{y})^2}$

$$R^2 = 1 - rac{SSR}{SST} = 1 - rac{\sum_i e_i^2}{\sum_i (y_i - ar y)^2}$$

$$R^2 = 1 - rac{SSR}{SST} = 1 - rac{\sum_i e_i^2}{\sum_i (y_i - ar{y})^2}$$

• R^2 varies between 0 and 1: Perfect model with $e_i = 0$ for all i has $R^2 = 1$. $R^2 = 0$ if we just guess the mean \bar{y} .

$$R^2=1-rac{SSR}{SST}=1-rac{\sum_i e_i^2}{\sum_i (y_i-ar y)^2}$$

- R^2 varies between 0 and 1: Perfect model with $e_i = 0$ for all i has $R^2 = 1$. $R^2 = 0$ if we just guess the mean \bar{y} .
- In more complex models, R^2 is not the same as the square of the correlation coefficient. You should think of them as related but distinct concepts.

About 49% of the variation in ozone can be explained with temperature alone!

```
#>
#> Call:
#> lm(formula = Ozone ~ Temp, data = airguality)
#>
#> Residuals:
      Min
          10 Median 30
                                    Max
#>
#> -40.729 -17.409 -0.587 11.306 118.271
#>
#> Coefficients:
              Estimate Std. Error t value Pr(>|t|)
#>
#> (Intercept) -146.9955 18.2872 -8.038 9.37e-13 ***
#> Temp 2.4287 0.2331 10.418 < 2e-16 ***
#> ----
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> Residual standard error: 23.71 on 114 degrees of freedom
    (37 observations deleted due to missingness)
#>
#XMultiple R-squared: 0.4877, Adjusted R-squared: 0.4832
#> F-statistic: 108.5 on 1 and 114 DF, p-value: < 2.2e-16
```

Definition: % of variance in y that is explained by x (and any other independent variables)

Definition: % of variance in y that is explained by x (and any other independent variables)

- Describes a linear relationship between y and \hat{y}

Definition: % of variance in y that is explained by x (and any other independent variables)

- Describes a linear relationship between y and \hat{y}
- Higher \mathbb{R}^2 does not mean a model is "better" or more appropriate
 - \circ Predictive power is not often the goal of regression analysis (e.g., you may just care about getting eta_1 right)
 - If you are focused on predictive power, many other measures of fit can be appropriate (to discuss in machine learning)
 - Always look at your data and residuals!

Definition: % of variance in y that is explained by x (and any other independent variables)

- Describes a linear relationship between y and \hat{y}
- Higher \mathbb{R}^2 does not mean a model is "better" or more appropriate
 - \circ Predictive power is not often the goal of regression analysis (e.g., you may just care about getting eta_1 right)
 - If you are focused on predictive power, many other measures of fit can be appropriate (to discuss in machine learning)
 - Always look at your data and residuals!
- Like OLS in general, R^2 is very sensitive to outliers. Again...always look at your data!

Here, $R^2 = 0.94$ for a model of $y = eta_0 + eta_1 x + \epsilon$. Does that mean a linear relationship with x is appropriate?

Here, $R^2=0$ for a model of $y=eta_0+eta_1x+\epsilon$. Does that mean there is no relationship between these variables?

Indicator/categorical variables

We have been talking a lot about **numerical** variables in linear regression...

- Ozone levels
- Crab size
- Temperature and precipitation amounts
- etc.

We have been talking a lot about **numerical** variables in linear regression...

- Ozone levels
- Crab size
- Temperature and precipitation amounts
- etc.

...but a lot of variables of interest are **categorical**:

- Male/female
- Presence/absence of a species
- In/out of compliance with a pollution standard
- etc.

We have been talking a lot about **numerical** variables in linear regression...

- Ozone levels
- Crab size
- Temperature and precipitation amounts
- etc.

...but a lot of variables of interest are **categorical**:

- Male/female
- Presence/absence of a species
- In/out of compliance with a pollution standard
- etc.

How do we execute and interpret linear regression with categorical data?

We use **dummy** or **indicator** variables in linear regression to capture the influence of a categorical independent variable (*x*) on a continuous dependent variable (*y*).

We use **dummy** or **indicator** variables in linear regression to capture the influence of a categorical independent variable (*x*) on a continuous dependent variable (*y*).

For example, let *x* be a categorical variable indicating the gender of an individual. Suppose we are interested in the "gender wage gap", so *y* is income We estimate:

 $y_i = eta_0 + eta_1 MALE_i + arepsilon_i$

We use **dummy** or **indicator** variables in linear regression to capture the influence of a categorical independent variable (*x*) on a continuous dependent variable (*y*).

For example, let *x* be a categorical variable indicating the gender of an individual. Suppose we are interested in the "gender wage gap", so *y* is income We estimate:

 $y_i = eta_0 + eta_1 MALE_i + arepsilon_i$

Interpretation [draw it]:

- *MALE_i* is an **indicator** variable that = 1 when *i* is male (0 otherwise)
- $\beta_0 = \text{average wages if } i \text{ is not male}$
- $\beta_0 + \beta_1 =$ average wages if i is male
- β_1 = average *difference* in wages between males and females

For a categorical variable with two "levels", the OLS slope coefficient is the *difference* in means across the two groups

What if I have many categories?

• E.g., species, education level, age group, ...

For example, let x be a categorical variable indicating the species of penguin, and y is body mass. We estimate:

 $y_i = eta_0 + eta_1 SPECIES_i + arepsilon_i$

Where **species** can be one of:

- Adelie
- Chinstrap
- Gentoo
library(palmerpenguins)
head(penguins)

#>	#	A tibbl	e: 6 × 8							
#>		species	island	bill_lengt	th_mm	bill_depth_mm	flipper_l…¹	body²	sex	year
#>		<fct></fct>	<fct></fct>	•	<dbl></dbl>	<dbl></dbl>	<int></int>	<int></int>	<fct></fct>	<int></int>
#>	1	Adelie	Torgersen		39.1	18.7	181	3750	male	2007
#>	2	Adelie	Torgersen		39.5	17.4	186	3800	fema	2007
#>	3	Adelie	Torgersen		40.3	18	195	3250	fema	2007
#>	4	Adelie	Torgersen		NA	NA	NA	NA	<na></na>	2007
#>	5	Adelie	Torgersen		36.7	19.3	193	3450	fema	2007
#>	6	Adelie	Torgersen		39.3	20.6	190	3650	male	2007
#>	#	… with	abbreviated	l variable	names	'flipper_leng	gth_mm, ² body	y_mass_g		

class(penguins\$species)

#> [1] "factor"

```
summary(lm(body mass g ~ species, data = penguins))
#>
#> Call:
#> lm(formula = body mass g ~ species, data = penguins)
#>
#> Residuals:
       Min
                1Q Median
#>
                                  3Q
                                         Max
#> -1126.02 -333.09 -33.09 316.91 1223.98
#>
#> Coefficients:
#>
                   Estimate Std. Error t value Pr(>|t|)
#> (Intercept)
                   3700.66
                               37.62 98.37 <2e-16 ***
#> speciesChinstrap 32.43 67.51 0.48
                                              0.631
                   1375.35 56.15 24.50
#> speciesGentoo
                                              <2e-16 ***
#> ----
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> Residual standard error: 462.3 on 339 degrees of freedom
  (2 observations deleted due to missingness)
#>
#> Multiple R-squared: 0.6697, Adjusted R-squared: 0.6677
#> F-statistic: 343.6 on 2 and 339 DF, p-value: < 2.2e-16
```

What is going on here?? One x variable turned into multiple slope coefficients? 👙

What is going on here?? One x variable turned into multiple slope coefficients? 🤔

R is turning our regression

 $y_i = eta_0 + eta_1 SPECIES_i + arepsilon_i$

where *SPECIES* is a categorical variable indicating one of three species, into:

 $y_i = eta_0 + eta_1 CHINSTRAP_i + eta_2 GENTOO_i + arepsilon_i$

where CHINSTRAP and GENTOO are dummy variables for the Chinstrap and Gentoo species, respectively.

When your categorical variable takes on k values, **R** will create dummy variables for k - 1 values, leaving one as the **reference** group:

#>	Coefficients:							
#>		Estimate	Std.	Error	t	value	Pr(> t)	
#>	(Intercept)	3700.66		37.62		98.37	<2e-16	***
#>	speciesChinstrap	32.43		67.51		0.48	0.631	
#>	speciesGentoo	1375.35		56.15		24.50	<2e-16	***

When your categorical variable takes on k values, **R** will create dummy variables for k - 1 values, leaving one as the **reference** group:

#>	Coefficients:							
#>		Estimate	Std.	Error	t	value	Pr(> t)	
#>	(Intercept)	3700.66		37.62		98.37	<2e-16	***
#>	speciesChinstrap	32.43		67.51		0.48	0.631	
#>	speciesGentoo	1375.35		56.15		24.50	<2e-16	***

To evaluate the outcome for the reference group, set the dummy variables equal to zero for all other groups.

Q: What is the average body mass of an Adelie species?

Q: What is the difference in body mass between Chinstrap and Adelie?

Multiple linear regression

We're moving from **simple linear regression** (one outcome variable and one explanatory variable)

 $y_i = eta_0 + eta_1 x_i + u_i$

We're moving from **simple linear regression** (one outcome variable and one explanatory variable)

$$y_i = \beta_0 + \beta_1 x_i + u_i$$

to the land of **multiple linear regression** (one outcome variable and multiple explanatory variables)

$$y_i=eta_0+eta_1x_{1i}+eta_2x_{2i}+\dots+eta_kx_{ki}+u_i$$

We're moving from **simple linear regression** (one outcome variable and one explanatory variable)

$$y_i = \beta_0 + \beta_1 x_i + u_i$$

to the land of **multiple linear regression** (one outcome variable and multiple explanatory variables)

$$y_i=eta_0+eta_1x_{1i}+eta_2x_{2i}+\dots+eta_kx_{ki}+u_i$$

Why?

We're moving from **simple linear regression** (one outcome variable and one explanatory variable)

$$y_i = \beta_0 + \beta_1 x_i + u_i$$

to the land of **multiple linear regression** (one outcome variable and multiple explanatory variables)

$$y_i=eta_0+eta_1x_{1i}+eta_2x_{2i}+\cdots+eta_kx_{ki}+u_i$$

Why? We can better explain the variation in *y*, improve predictions, avoid omitted-variable bias (i.e., second assumption needed for unbiased OLS estimates), ...

Multiple linear regression...

$$y_i=eta_0+eta_1x_{1i}+eta_2x_{2i}+\dots+eta_kx_{ki}+u_i$$

Multiple linear regression...

$$y_i=eta_0+eta_1x_{1i}+eta_2x_{2i}+\cdots+eta_kx_{ki}+u_i$$

Multiple linear regression...

$$y_i=eta_0+eta_1x_{1i}+eta_2x_{2i}+\cdots+eta_kx_{ki}+u_i$$

... raises many questions:

• Which *x*'s should I include? This is the problem of "model selection".

Multiple linear regression...

$$y_i=eta_0+eta_1x_{1i}+eta_2x_{2i}+\cdots+eta_kx_{ki}+u_i$$

- Which *x*'s should I include? This is the problem of "model selection".
- How does my interpretation of β_1 change?

Multiple linear regression...

$$y_i=eta_0+eta_1x_{1i}+eta_2x_{2i}+\cdots+eta_kx_{ki}+u_i$$

- Which *x*'s should I include? This is the problem of "model selection".
- How does my interpretation of β_1 change?
- What if my *x*'s interact with each other? E.g., race and gender, temperature and rainfall.

Multiple linear regression...

$$y_i=eta_0+eta_1x_{1i}+eta_2x_{2i}+\cdots+eta_kx_{ki}+u_i$$

- Which *x*'s should I include? This is the problem of "model selection".
- How does my interpretation of β_1 change?
- What if my *x*'s interact with each other? E.g., race and gender, temperature and rainfall.
- How do I measure model fit now?

Multiple linear regression...

$$y_i=eta_0+eta_1x_{1i}+eta_2x_{2i}+\cdots+eta_kx_{ki}+u_i$$

... raises many questions:

- Which *x*'s should I include? This is the problem of "model selection".
- How does my interpretation of β_1 change?
- What if my *x*'s interact with each other? E.g., race and gender, temperature and rainfall.
- How do I measure model fit now?

We will dig into each of these here, and you will see these questions in other MEDS courses

 $y_i = eta_0 + eta_1 x_{1i} + eta_2 x_{2i} + u_i$ x_1 is continuous x_2 is categorical

 $y_i = eta_0 + eta_1 x_{1i} + eta_2 x_{2i} + u_i$ x_1 is continuous x_2 is categorical

The intercept and categorical variable x_2 control for the groups' means.

 $\hat{\beta}_1$ estimates the relationship between y and x_1 after controlling for x_2 . This is often called the "parallel slopes" model (one slope β_1 for each of the groups in x_2)

More generally, how do we think about multiple explanatory variables?

More generally, how do we think about multiple explanatory variables?

Suppose $y_i = eta_0 + eta_1 x_{1i} + eta_2 x_{2i} + u_i$

More generally, how do we think about multiple explanatory variables?

Suppose $y_i = eta_0 + eta_1 x_{1i} + eta_2 x_{2i} + u_i$

More generally, how do we think about multiple explanatory variables?

With **many** explanatory variables, we visualizing relationships means thinking about **hyperplanes** 😻

 $y_i=eta_0+eta_1x_{1i}+eta_2x_{2i}+\ldots+eta_kx_{ki}+u_i$

Math notation looks very similar to simple linear regression, but *conceptually* and *visually* multiple regression is **very different**

$$y_i=eta_0+eta_1x_{1i}+eta_2x_{2i}{+}\dots{+}eta_kx_{ki}+u_i$$

Interpretation of coefficients

$$y_i=eta_0+eta_1x_{1i}+eta_2x_{2i}+\ldots+eta_kx_{ki}+u_i$$

• β_k tells us the change in y due to a one unit change in x_k when **all other variables are held constant**

$$y_i=eta_0+eta_1x_{1i}+eta_2x_{2i}+\ldots+eta_kx_{ki}+u_i$$

- β_k tells us the change in y due to a one unit change in x_k when **all other variables are held constant**
- This is an "all else equal" interpretation

$$y_i=eta_0+eta_1x_{1i}+eta_2x_{2i}+\ldots+eta_kx_{ki}+u_i$$

- β_k tells us the change in y due to a one unit change in x_k when **all other variables are held constant**
- This is an "all else equal" interpretation
- E.g., how much do wages increase with one more year of education, *holding gender fixed*?

$$y_i=eta_0+eta_1x_{1i}+eta_2x_{2i}+\ldots+eta_kx_{ki}+u_i$$

- β_k tells us the change in y due to a one unit change in x_k when **all other variables are held constant**
- This is an "all else equal" interpretation
- E.g., how much do wages increase with one more year of education, holding gender fixed?
- E.g., how much does ozone increase when temperature rises, holding NOx emissions fixed?

Tradeoffs

There are tradeoffs to consider as we add/remove variables:

Fewer variables

- Generally explain less variation in \boldsymbol{y}
- Provide simple interpretations and visualizations (*parsimonious*)
- May need to worry about omitted-variable bias

More variables

- More likely to find *spurious* relationships (statistically significant due to chance—does not reflect a true, population-level relationship)
- More difficult to interpret the model
- You may still miss important variables—still omitted-variable bias

Omitted-variable bias

You will study this in much more depth in EDS 241, but here's a primer.

Omitted-variable bias (OVB) arises when we omit a variable that

- 1. affects our outcome variable y
- 2. correlates with an explanatory variable x_j

As it's name suggests, this situation leads to bias in our estimate of β_j . In particular, it violates Assumption 2 of OLS from last week.

Omitted-variable bias

You will study this in much more depth in EDS 241, but here's a primer.

Omitted-variable bias (OVB) arises when we omit a variable that

- 1. affects our outcome variable *y*
- 2. correlates with an explanatory variable x_j

As it's name suggests, this situation leads to bias in our estimate of β_j . In particular, it violates Assumption 2 of OLS from last week.

Note: OVB Is not exclusive to multiple linear regression, but it does require multiple variables affect *y*.

Omitted-variable bias

Example

Let's imagine a simple model for the cancer rates in census tract *i*:

 $ext{Cancer rate}_i = eta_0 + eta_1 ext{UV radiation}_i + eta_2 ext{TRI}_i + u_i$

where

- UV radiation_i gives the average UV radiation in tract i (mW/cm 2)
- TRI_i denotes an indicator variable for whether tract i has a Toxics Release Inventory facility

thus

- β_1 : the change in cancer rate associated with a 1 mW/cm 2 increase in UV radiation (*ceteris paribus*)
- β_2 : the difference in avg. cancer rates between TRI and non-TRI census tracts (*ceteris paribus*) If $\beta_2 > 0$, then TRI tracts have higher cancer rates
"True" relationship: $Cancer rate_i = 20 + 0.5 \times UV radiation_i + 10 \times TRI_i + u_i$

The relationship between cancer rates and UV radiations:

Biased regression estimate: $\widehat{\text{Cancer rate}_i} = 31.3 + -0.9 \times \text{UV radiation}_i$

Recalling the omitted variable: TRI (non-TRI and TRI)

Recalling the omitted variable: TRI (non-TRI and TRI)

Unbiased regression estimate: $\widehat{\text{Cancer rate}_i} = 20.9 + 0.4 \times \text{UV radiation}_i + 9.1 \times \text{TRI}_i$

Slides created via the R package **xaringan**.

Some slide components come from Ed Rubin's awesome course materials.