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Reiteration of COVID/illness policy

2 / 42



Today
Notes on OLS

Outliers, missing data

3 / 42



Today
Notes on OLS

Outliers, missing data

Measures of model �t

Coef�cient of variation R2

3 / 42



Today
Notes on OLS

Outliers, missing data

Measures of model �t

Coef�cient of variation 

Categorical variables

In R, interpretation

R2

3 / 42



Today
Notes on OLS

Outliers, missing data

Measures of model �t

Coef�cient of variation 

Categorical variables

In R, interpretation

Multiple linear regression

Adding independent variables, interpretation of results

R2

3 / 42



Notes on OLSNotes on OLS

4 / 424 / 42



Outliers
Because OLS minimizes the sum of the squared errors, outliers can play a large role in our estimates.

Common responses

Remove the outliers from the dataset

Replace outliers with the 99th percentile of their variable (winsorize)

Take the log of the variable (This lowers the leverage of large values -- why?)

Do nothing. Outliers are not always bad. Some people are "far" from the average. It may not make sense to try to
change this variation.

5 / 42



Missing data
Similarly, missing data can affect your results.

R doesn't know how to deal with a missing observation.

1 + 2 + 3 + NA + 5

#> [1] NA

If you run a regression† with missing values, R drops the observations missing those values.

If the observations are missing in a nonrandom way, a random sample may end up nonrandom.

[†]: Or perform almost any operation/function
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Measures of model �t

Goal: quantify how "well" your regression model �ts the data

General idea: Larger variance in residuals suggests our model isn't very predictive
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Coef�cient of determination
We already learned one measure of the strength of a linear relationship: correlation, r
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Coef�cient of determination
We already learned one measure of the strength of a linear relationship: correlation, 

In OLS, we often rely on , the coef�cient of determination. In simple linear regression, this is simply the square
of the correlation.

Interpretation of : share of the variance in  that is explained by your regression model

r

R2

R2 y

SSR = sum of squared residuals = ∑
i

(yi − ŷ i)
2 = ∑

i

e2
i

SST = total sum of squares = ∑
i

(yi − ȳ)2

R2 = 1 − = 1 −
SSR

SST

∑i e2
i

∑i(yi − ȳ)2
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Coef�cient of determination

 varies between 0 and 1: Perfect model with  for all  has .  if we just guess the mean .

R2 = 1 − = 1 −
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Coef�cient of determination

 varies between 0 and 1: Perfect model with  for all  has .  if we just guess the mean .

In more complex models,  is not the same as the square of the correlation coef�cient. You should think of them
as related but distinct concepts.

R2 = 1 − = 1 −
SSR

SST

∑i e2
i

∑i(yi − ȳ)2

R2 ei = 0 i R2 = 1 R2 = 0 ȳ

R2
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Coef�cient of determination
About 49% of the variation in ozone can be explained with temperature alone!
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Coef�cient of determination
De�nition: % of variance in  that is explained by  (and any other independent variables)y x
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Coef�cient of determination
De�nition: % of variance in  that is explained by  (and any other independent variables)

Describes a linear relationship between  and 

Higher  does not mean a model is "better" or more appropriate

Predictive power is not often the goal of regression analysis (e.g., you may just care about getting  right)
If you are focused on predictive power, many other measures of �t can be appropriate (to discuss in machine
learning)
Always look at your data and residuals!
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De�nition: % of variance in  that is explained by  (and any other independent variables)

Describes a linear relationship between  and 

Higher  does not mean a model is "better" or more appropriate

Predictive power is not often the goal of regression analysis (e.g., you may just care about getting  right)
If you are focused on predictive power, many other measures of �t can be appropriate (to discuss in machine
learning)
Always look at your data and residuals!

Like OLS in general,  is very sensitive to outliers. Again...always look at your data!

y x

y ŷ

R2

β1

R2
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Coef�cient of determination
Here,  for a model of . Does that mean a linear relationship with  is appropriate?R2 = 0.94 y = β0 + β1x + ϵ x
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Coef�cient of determination
Here,  for a model of . Does that mean there is no relationship between these variables?R2 = 0 y = β0 + β1x + ϵ
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Indicator/categorical variablesIndicator/categorical variables

15 / 4215 / 42



Categorical variables
We have been talking a lot about numerical variables in linear regression...

Ozone levels
Crab size
Temperature and precipitation amounts
etc.
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Categorical variables
We have been talking a lot about numerical variables in linear regression...

Ozone levels
Crab size
Temperature and precipitation amounts
etc.

...but a lot of variables of interest are categorical:

Male/female
Presence/absence of a species
In/out of compliance with a pollution standard
etc.

How do we execute and interpret linear regression with categorical data?

16 / 42



Categorical variables
We use dummy or indicator variables in linear regression to capture the in�uence of a categorical independent
variable (x) on a continuous dependent variable (y).
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For example, let x be a categorical variable indicating the gender of an individual. Suppose we are interested in the
"gender wage gap", so y is income We estimate:

yi = β0 + β1MALEi + εi
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Categorical variables
We use dummy or indicator variables in linear regression to capture the in�uence of a categorical independent
variable (x) on a continuous dependent variable (y).

For example, let x be a categorical variable indicating the gender of an individual. Suppose we are interested in the
"gender wage gap", so y is income We estimate:

Interpretation [draw it]:

 is an indicator variable that = 1 when  is male (0 otherwise)
 average wages if  is not male

 average wages if  is male
 average difference in wages between males and females

yi = β0 + β1MALEi + εi

MALEi i

β0 = i

β0 + β1 = i

β1 =
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Categorical variables
For a categorical variable with two "levels", the OLS slope coef�cient is the difference in means across the two
groups
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Categorical variables
What if I have many categories?

E.g., species, education level, age group, ...

For example, let x be a categorical variable indicating the species of penguin, and y is body mass. We estimate:

Where species can be one of:

Adelie
Chinstrap
Gentoo

yi = β0 + β1SPECIESi + εi
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Categorical variables
library(palmerpenguins) 
head(penguins)

#> # A tibble: 6 × 8
#>   species island    bill_length_mm bill_depth_mm flipper_l…¹ body_…² sex    year
#>   <fct>   <fct>              <dbl>         <dbl>       <int>   <int> <fct> <int>
#> 1 Adelie  Torgersen           39.1          18.7         181    3750 male   2007
#> 2 Adelie  Torgersen           39.5          17.4         186    3800 fema…  2007
#> 3 Adelie  Torgersen           40.3          18           195    3250 fema…  2007
#> 4 Adelie  Torgersen           NA            NA            NA      NA <NA>   2007
#> 5 Adelie  Torgersen           36.7          19.3         193    3450 fema…  2007
#> 6 Adelie  Torgersen           39.3          20.6         190    3650 male   2007
#> # … with abbreviated variable names ¹ flipper_length_mm, ² body_mass_g

class(penguins$species)

#> [1] "factor"
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Categorical variables
summary(lm(body_mass_g ~ species, data = penguins))

#> 
#> Call:
#> lm(formula = body_mass_g ~ species, data = penguins)
#> 
#> Residuals:
#>      Min       1Q   Median       3Q      Max 
#> -1126.02  -333.09   -33.09   316.91  1223.98 
#> 
#> Coefficients:
#>                  Estimate Std. Error t value Pr(>|t|)    
#> (Intercept)       3700.66      37.62   98.37   <2e-16 ���
#> speciesChinstrap    32.43      67.51    0.48    0.631    
#> speciesGentoo     1375.35      56.15   24.50   <2e-16 ���
#> ���
#> Signif. codes:  0 '���' 0.001 '��' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#> 
#> Residual standard error: 462.3 on 339 degrees of freedom
#>   (2 observations deleted due to missingness)
#> Multiple R-squared:  0.6697,    Adjusted R-squared:  0.6677 
#> F-statistic: 343.6 on 2 and 339 DF,  p�value: < 2.2e-16
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Categorical variables
What is going on here?? One x variable turned into multiple slope coef�cients? 🤔
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Categorical variables
What is going on here?? One x variable turned into multiple slope coef�cients? 🤔

R is turning our regression

where SPECIES is a categorical variable indicating one of three species, into:

where CHINSTRAP and GENTOO are dummy variables for the Chinstrap and Gentoo species, respectively.

yi = β0 + β1SPECIESi + εi

yi = β0 + β1CHINSTRAPi + β2GENTOOi + εi
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Categorical variables
When your categorical variable takes on  values, R will create dummy variables for  values, leaving one as the
reference group:

k k − 1
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Categorical variables
When your categorical variable takes on  values, R will create dummy variables for  values, leaving one as the
reference group:

To evaluate the outcome for the reference group, set the dummy variables equal to zero for all other groups.

Q: What is the average body mass of an Adelie species?

Q: What is the difference in body mass between Chinstrap and Adelie?

k k − 1
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Multiple linear regressionMultiple linear regression
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More explanatory variables
We're moving from simple linear regression (one outcome variable and one explanatory variable)

yi = β0 + β1xi + ui
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More explanatory variables
We're moving from simple linear regression (one outcome variable and one explanatory variable)

to the land of multiple linear regression (one outcome variable and multiple explanatory variables)

Why? We can better explain the variation in , improve predictions, avoid omitted-variable bias (i.e., second
assumption needed for unbiased OLS estimates), ...

yi = β0 + β1xi + ui

yi = β0 + β1x1i + β2x2i + ⋯ + βkxki + ui

y
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More explanatory variables
Multiple linear regression...

... raises many questions:

Which 's should I include? This is the problem of "model selection".

How does my interpretation of  change?

What if my 's interact with each other? E.g., race and gender, temperature and rainfall.

How do I measure model �t now?

We will dig into each of these here, and you will see these questions in other MEDS courses

yi = β0 + β1x1i + β2x2i + ⋯ + βkxki + ui

x

β1

x
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Multiple regression
  is continuous  is categoricalyi = β0 + β1x1i + β2x2i + ui x1 x2
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Multiple regression
  is continuous  is categoricalyi = β0 + β1x1i + β2x2i + ui x1 x2
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Multiple regression
The intercept and categorical variable  control for the groups' means.x2
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Multiple regression
 estimates the relationship between  and  after controlling for . This is often called the "parallel slopes" model

(one slope  for each of the groups in )
β̂1 y x1 x2

β1 x2
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Multiple regression
More generally, how do we think about multiple explanatory variables?
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Multiple regression
More generally, how do we think about multiple explanatory variables?

20
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40

50

60
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Multiple regression

With many explanatory variables, we visualizing relationships means thinking about
hyperplanes 🤯

Math notation looks very similar to simple linear regression, but conceptually and visually multiple regression is
very different

yi = β0 + β1x1i + β2x2i+. . . +βkxki + ui
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Multiple regression

Interpretation of coef�cients
yi = β0 + β1x1i + β2x2i+. . . +βkxki + ui
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Multiple regression

Interpretation of coef�cients

 tells us the change in  due to a one unit change in  when all other variables are held constant
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Multiple regression

Interpretation of coef�cients

 tells us the change in  due to a one unit change in  when all other variables are held constant

This is an "all else equal" interpretation

E.g., how much do wages increase with one more year of education, holding gender �xed?
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Multiple regression

Interpretation of coef�cients

 tells us the change in  due to a one unit change in  when all other variables are held constant

This is an "all else equal" interpretation

E.g., how much do wages increase with one more year of education, holding gender �xed?

E.g., how much does ozone increase when temperature rises, holding NOx emissions �xed?

yi = β0 + β1x1i + β2x2i+. . . +βkxki + ui

βk y xk
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Tradeoffs
There are tradeoffs to consider as we add/remove variables:

Fewer variables

Generally explain less variation in 
Provide simple interpretations and visualizations (parsimonious)
May need to worry about omitted-variable bias

More variables

More likely to �nd spurious relationships (statistically signi�cant due to chance—does not re�ect a true,
population-level relationship)
More dif�cult to interpret the model
You may still miss important variables—still omitted-variable bias

y

34 / 42



Omitted-variable bias
You will study this in much more depth in EDS 241, but here's a primer.

Omitted-variable bias (OVB) arises when we omit a variable that

�. affects our outcome variable 

�. correlates with an explanatory variable 

As it's name suggests, this situation leads to bias in our estimate of . In particular, it violates Assumption 2 of OLS
from last week.

y

xj

βj

35 / 42
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You will study this in much more depth in EDS 241, but here's a primer.

Omitted-variable bias (OVB) arises when we omit a variable that

�. affects our outcome variable 

�. correlates with an explanatory variable 

As it's name suggests, this situation leads to bias in our estimate of . In particular, it violates Assumption 2 of OLS
from last week.

Note: OVB Is not exclusive to multiple linear regression, but it does require multiple variables affect .

y

xj

βj

y
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Omitted-variable bias
Example

Let's imagine a simple model for the cancer rates in census tract :

where

 gives the average UV radiation in tract  (mW/cm$^2$)
 denotes an indicator variable for whether tract  has a Toxics Release Inventory facility

thus

: the change in cancer rate associated with a 1 mW/cm$^2$ increase in UV radiation (ceteris paribus)
: the difference in avg. cancer rates between TRI and non-TRI census tracts (ceteris paribus)

If , then TRI tracts have higher cancer rates

i

Cancer ratei = β0 + β1UV radiationi + β2TRIi + ui

UV radiationi i

TRIi i

β1

β2

β2 > 0
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Omitted-variable bias
"True" relationship: 

The relationship between cancer rates and UV radiations:

Cancer ratei = 20 + 0.5 × UV radiationi + 10 × TRIi + ui
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Omitted-variable bias

Biased regression estimate: ˆCancer ratei = 31.3 + −0.9 × UV radiationi
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Omitted-variable bias
Recalling the omitted variable: TRI (non-TRI and TRI)
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Omitted-variable bias
Recalling the omitted variable: TRI (non-TRI and TRI)

40 / 42



Omitted-variable bias

Unbiased regression estimate: ˆCancer ratei = 20.9 + 0.4 × UV radiationi + 9.1 × TRIi
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Slides created via the R package xaringan.

Some slide components come from Ed Rubin's awesome course materials.
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https://github.com/yihui/xaringan
https://github.com/edrubin/EC421S20



