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Announcements/check-in
Midterm review: In Discussion Section this week and in of�ce hours any
time

Extra study resources on our Resources page

Answer key to practice questions
Example of testing OLS assumptions
Derivation of omitted variables bias

Moving of�ce hours this week for the Mantell Symposium in EJ and
Conservation Innovation (please reach out if this is a problem - happy
to add time to meet with you as needed)

Assignment 3: Posted 10/24 alongside answer key. Grading will be
pass/fail, due 11/7 at 5pm
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Midterm Exam

Two parts:
Part 1: Short answer questions (~3)

Focus on de�nitions of key concepts

You should know key de�nitions (e.g., expectation/mean, median,
variance, , OLS slope and intercept formulas for simple linear
regression)

You do not need to memorize math rules (e.g., )

Be able to interpret probability distributions, scatter plots, Q-Q plots,
boxplots, linear regression output (not -values or -statistics)

R2

var(ax + b) = a2var(x)

p t
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Midterm Exam

Two parts:
Part 2: Long answer questions (~2)

Each question poses a data science problem and walks you through a
set of analysis steps

Very similar to assignments but focused on interpretation of existing
code and output

May include some minimal pseudo-coding
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Today
Model �t in multiple regression

Nonlinear relationships in linear models, adjusted R2
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Today
Model �t in multiple regression

Nonlinear relationships in linear models, adjusted 

Interaction effects

Implementation and interpretation

Multicollinearity

Problems and (some) solutions

R2
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Model �t in multiple regressionModel �t in multiple regression
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Nonlinear transformations
Our linearity assumption requires that parameters enter linearly (i.e.,
the  multiplied by variables)
We allow nonlinear relationships between  and the explanatory
variables .

Example: Polynomials

βk

y

x

yi = β0 + β1xi + β2x2
i + ui

yi = β0 + β1xi + β2x2
i + β3x3

i + ui

yi = β0 + β1xi + β2x2
i + β3x3

i + β4x4
i + ui
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Polynomials
Consider the relationship between temperature and harmful algal
blooms (this is a real thing!).
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https://www.epa.gov/nutrientpollution/climate-change-and-harmful-algal-blooms#:~:text=Warmer%20temperatures%20prevent%20water%20from,warmer%20and%20promoting%20more%20blooms.


Polynomials
Consider the relationship between temperature and harmful algal
blooms (this is a real thing!).

Suppose we sampled many coastal locations across the US, and
measured the total surface water area at each site that had blooms
present.
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Polynomials
Consider the relationship between temperature and harmful algal
blooms (this is a real thing!).

Suppose we sampled many coastal locations across the US, and
measured the total surface water area at each site that had blooms
present.

Perhaps we have scienti�c evidence to suggest there is a nonlinear
effect of temperature on extent of the blooms.

We might want to estimate the following model:

areai = β0 + β1temperaturei + β2temperature2
i + ui
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Polynomials
areai = β0 + β1temperaturei + β2temperature2

i + ui

9 / 36



Polynomials
Estimating polynomial regressions in R , option 1:

blooms_df = blooms_df %>% mutate(temp2 = temp^2)
summary(lm(area~temp�temp2, data=blooms_df))

#> 
#> Call:
#> lm(formula = area ~ temp + temp2, data = blooms_df)
#> 
#> Residuals:
#>      Min       1Q   Median       3Q      Max 
#> -12.5966  -2.0923  -0.1423   1.9951   9.4874 
#> 
#> Coefficients:
#>             Estimate Std. Error t value Pr(>|t|)    
#> (Intercept)  0.06363    0.29249   0.218    0.828    
#> temp         0.62544    0.44007   1.421    0.156    
#> temp2        1.92118    0.14160  13.567   <2e-16 ���
#> ���
#> Signif. codes:  0 '���' 0.001 '��' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#> 
#> Residual standard error: 3.021 on 997 degrees of freedom
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Polynomials
Estimating polynomial regressions in R , option 2:

summary(lm(area~temp+I(temp^2), data=blooms_df))

#> 
#> Call:
#> lm(formula = area ~ temp + I(temp^2), data = blooms_df)
#> 
#> Residuals:
#>      Min       1Q   Median       3Q      Max 
#> -12.5966  -2.0923  -0.1423   1.9951   9.4874 
#> 
#> Coefficients:
#>             Estimate Std. Error t value Pr(>|t|)    
#> (Intercept)  0.06363    0.29249   0.218    0.828    
#> temp         0.62544    0.44007   1.421    0.156    
#> I(temp^2)    1.92118    0.14160  13.567   <2e-16 ���
#> ���
#> Signif. codes:  0 '���' 0.001 '��' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#> 
#> Residual standard error: 3.021 on 997 degrees of freedom
#> Multiple R-squared:  0.7772,    Adjusted R-squared:  0.7768 
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Polynomials
Watch out! Some things are not intuitive:

summary(lm(area~poly(temp,2), data=blooms_df))

#> 
#> Call:
#> lm(formula = area ~ poly(temp, 2), data = blooms_df)
#> 
#> Residuals:
#>      Min       1Q   Median       3Q      Max 
#> -12.5966  -2.0923  -0.1423   1.9951   9.4874 
#> 
#> Coefficients:
#>                 Estimate Std. Error t value Pr(>|t|)    
#> (Intercept)      7.05901    0.09554   73.88   <2e-16 ���
#> poly(temp, 2)1 173.40269    3.02137   57.39   <2e-16 ���
#> poly(temp, 2)2  40.99164    3.02137   13.57   <2e-16 ���
#> ���
#> Signif. codes:  0 '���' 0.001 '��' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#> 
#> Residual standard error: 3.021 on 997 degrees of freedom
#> Multiple R-squared:  0.7772,    Adjusted R-squared:  0.7768 
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Polynomials
Watch out! Some things are not intuitive (need raw=TRUE  for coef�cients to
be interpretable -- see helpful Stack Over�ow on this here):

summary(lm(area~poly(temp,2, raw=TRUE), data=blooms_df))

#> 
#> Call:
#> lm(formula = area ~ poly(temp, 2, raw = TRUE), data = blooms_df)
#> 
#> Residuals:
#>      Min       1Q   Median       3Q      Max 
#> -12.5966  -2.0923  -0.1423   1.9951   9.4874 
#> 
#> Coefficients:
#>                            Estimate Std. Error t value Pr(>|t|)    
#> (Intercept)                 0.06363    0.29249   0.218    0.828    
#> poly(temp, 2, raw = TRUE)1  0.62544    0.44007   1.421    0.156    
#> poly(temp, 2, raw = TRUE)2  1.92118    0.14160  13.567   <2e-16 ���
#> ���
#> Signif. codes:  0 '���' 0.001 '��' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#> 
#> R id l t d d 3 021 997 d g f f d
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https://stackoverflow.com/questions/19484053/what-does-the-r-function-poly-really-do


Polynomials

Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.0636289 0.292487 0.2175444 0.8278286

temp 0.6254436 0.440068 1.4212430 0.1555588

I(temp^2) 1.9211754 0.141604 13.5672357 0.0000000

14 / 36



Polynomials

Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.0636289 0.292487 0.2175444 0.8278286

temp 0.6254436 0.440068 1.4212430 0.1555588

I(temp^2) 1.9211754 0.141604 13.5672357 0.0000000

How do we interpret these coef�cients?

Intercept: Predicted area of bloom when temperature = 0 degrees C

14 / 36



Polynomials

Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.0636289 0.292487 0.2175444 0.8278286

temp 0.6254436 0.440068 1.4212430 0.1555588

I(temp^2) 1.9211754 0.141604 13.5672357 0.0000000

How do we interpret these coef�cients?

Intercept: Predicted area of bloom when temperature = 0 degrees C

 (coeff. on ) and  (coeff. on )... ???β̂1 temp β̂2 temp2

14 / 36



Polynomials

Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.0636289 0.292487 0.2175444 0.8278286

temp 0.6254436 0.440068 1.4212430 0.1555588

I(temp^2) 1.9211754 0.141604 13.5672357 0.0000000

How do we interpret these coef�cients?

Intercept: Predicted area of bloom when temperature = 0 degrees C

 (coeff. on ) and  (coeff. on )... ???

Go back to Algebra II (see here for a refresher): .  tells you
whether the U-shape faces up or down, and how narrow or wide it is;  tells
you whether the U-shape shifts left or right away from the -axis;  simply
shifts the U-shape up or down.

β̂1 temp β̂2 temp2

y = ax2 + bx + c a

b

y c
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http://www.abcte.org/files/previews/math/s4_p2.html


Polynomials
Don't worry about the Algebra II if it doesn't feel familiar!

You can always:

Graph your predicted values using geom_smooth()  (see Lab 5)
Put your coef�cients into an automated grapher function (online or on
your Mac)
Use the regression output directly, along with a little basic math (e.g.,
predict area at temperature = 15, then at temperature = 16, and take the
difference!)

areai = β0 + β1temperaturei + β2temperature2
i + ui
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Polynomials
Don't worry about the Algebra II if it doesn't feel familiar!

You can always:

Graph your predicted values using geom_smooth()  (see Lab 5)
Put your coef�cients into an automated grapher function (online or on
your Mac)
Use the regression output directly, along with a little basic math (e.g.,
predict area at temperature = 15, then at temperature = 16, and take the
difference!)

Key insight: effect of an increase in temperature on algal bloom area
depends on the baseline level of temperature! (true for all nonlinear
relationships)

areai = β0 + β1temperaturei + β2temperature2
i + ui
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Nonlinear transformations
Other examples:

Polynomials and interactions:
 (more on this

today)

Exponentials and logs:  (more on this
next week)

Indicators and thresholds: 

yi = β0 + β1x1i + β2x2
1i + β3x2i + β4x2

2i + β5 (x1ix2i) + ui

log(yi) = β0 + β1x1i + β2ex2i + ui

yi = β0 + β1x1i + β2 I(x1i ≥ 100) + ui
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Nonlinear transformations
Other examples:

Polynomials and interactions:
 (more on this

today)

Exponentials and logs:  (more on this
next week)

Indicators and thresholds: 

In all cases, the effect of a change in  on  will vary depending on your
baseline level of . This is not true with linear relationships!

yi = β0 + β1x1i + β2x2
1i + β3x2i + β4x2

2i + β5 (x1ix2i) + ui

log(yi) = β0 + β1x1i + β2ex2i + ui

yi = β0 + β1x1i + β2 I(x1i ≥ 100) + ui

x y

x
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Nonlinear transformations
Transformation challenge: (literally) in�nite possibilities. What do we pick?
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Nonlinear transformations
yi = β0 + ui
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Nonlinear transformations
yi = β0 + β1x + ui
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Nonlinear transformations
yi = β0 + β1x + β2x2 + ui
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Nonlinear transformations
yi = β0 + β1x + β2x2 + β3x3 + ui
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Nonlinear transformations
yi = β0 + β1x + β2x2 + β3x3 + β4x4 + ui
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Nonlinear transformations
yi = β0 + β1x + β2x2 + β3x3 + β4x4 + β5x5 + ui
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Nonlinear transformations
Truth: yi = 2ex + ui
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Model �t with multiple regressors
Measures of goodness of �t try to analyze how well our model describes
(�ts) the data.
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Model �t with multiple regressors
Measures of goodness of �t try to analyze how well our model describes
(�ts) the data.

Common measure:  [R-squared] (a.k.a. coef�cient of determination)

Recall  is the "sum of squared errors".

R2

R2 = 1 − = 1 −
∑i (yi − ŷ i)

2

∑i (yi − ¯̄̄y)
2

∑i e2
i

∑i (yi − ¯̄̄y)
2

∑
i
(yi − ŷ i)

2 = ∑
i
e2

i
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Model �t with multiple regressors
Measures of goodness of �t try to analyze how well our model describes
(�ts) the data.

Common measure:  [R-squared] (a.k.a. coef�cient of determination)

Recall  is the "sum of squared errors".

 literally tells us the share of the variance in  our current models
accounts for. Thus .

R2

R2 = 1 − = 1 −
∑i (yi − ŷ i)

2

∑i (yi − ¯̄̄y)
2

∑i e2
i

∑i (yi − ¯̄̄y)
2

∑
i
(yi − ŷ i)

2 = ∑
i
e2

i

R2 y

0 ≤ R2 ≤ 1
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Model �t with multiple regressors
The problem: As we add variables to our model,  mechanically increases.R2
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lower  by �tting to the sampling noise
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y
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Model �t with multiple regressors
The problem: As we add variables to our model,  mechanically increases.

Intuition: Even if our added variable has no true relation to , it can help
lower  by �tting to the sampling noise

One solution: Penalize for the number of variables, e.g., adjusted :

Where  is the number of independent variables in the regression model
and  is the total number of observations in your data.

Note: Adjusted  need not be between 0 and 1.

R2

y

ei

R2

¯̄¯̄
R

2
= 1 −

∑i (yi − ŷ i)
2
/(n − k − 1)

∑i (yi − ¯̄̄y)
2
/(n − 1)

k

n

R2
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Model �t with multiple regressors
We often use measures of model �t (or model "performance") to help
choose a regression model from among multiple possibilities

Adjusted  is just one of many possible performance metricsR2
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Model �t with multiple regressors
We often use measures of model �t (or model "performance") to help
choose a regression model from among multiple possibilities

Adjusted  is just one of many possible performance metrics

For example, Akaike Information Criterion (AIC), Bayesian Information
Criterion (BIC), Mean Squared Error (MSE), ...

Lots more on the topic of model selection in EDS 232 👀

Don't forget the theory behind your data science!

R2
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InteractionsInteractions
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Interactions
Interactions allow the effect of one variable to change based upon the level
of another variable.

Examples

�. Does the effect of schooling on pay change by race?

�. Does the effect of temperature on ozone change by humidity?

�. Does the effect of UV radiation on cancer change by gender?

�. ??
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Interactions
Previously, we considered a model that allowed Toxics Release Inventory
(TRI) census tracts and non-TRI tracts to have different average cancer
rates, but the model assumed the effect of UV radiation on cancer was the
same for everyone:

but we can also allow the effect of UV to vary by TRI status:

Canceri = β0 + β1 UVi + β2 TRIi + ui

Canceri = β0 + β1 UVi + β2 TRIi + β3 UVi × TRIi + ui
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Interactions
Previously, we considered a model that allowed Toxics Release Inventory
(TRI) census tracts and non-TRI tracts to have different average cancer
rates, but the model assumed the effect of UV radiation on cancer was the
same for everyone:

but we can also allow the effect of UV to vary by TRI status:

The multiplication of  by  is called an interaction term

Canceri = β0 + β1 UVi + β2 TRIi + ui

Canceri = β0 + β1 UVi + β2 TRIi + β3 UVi × TRIi + ui

UV TRI

23 / 36



Interactions
The model where UV radiation has the same effect for all tracts (non-TRI
and TRI):

Canceri = β0 + β1 UVi + β2 TRIi + ui
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Interactions
The model where UV radiation's effect can differ by TRI status of a tract
(non-TRI and TRI):

Canceri = β0 + β1 UVi + β2 TRIi + β3 UVi × TRIi + ui
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Interactions

Interpreting coef�cients can be a little tricky -- carefully working through
the math helps.

Basic idea: rearrange to uncover a single "slope" term for your variable of
interest.

Canceri = β0 + β1 UVi + β2 TRIi + β3 UVi × TRIi + ui
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Interactions

Interpreting coef�cients can be a little tricky -- carefully working through
the math helps.

Basic idea: rearrange to uncover a single "slope" term for your variable of
interest.

Effect of one more mW/cm^2 of UV radiation on cancer rates:

This helps you see that the effect of a one unit increase in  on 
is , so it will vary by  status:

Effect for  tracts = 
Effect for  tracts = 

Canceri = β0 + β1 UVi + β2 TRIi + β3 UVi × TRIi + ui

Canceri = β0 + β2TRIi + (β1 + β3TRIi) × UVi + ui

UV Cancer

β1 + β3TRI TRI

TRI β1 + β3

non − TRI β1
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Interactions

In general, interaction models should be used when the level of one
variable in�uences the relationship between the outcome and another
variables

yi = β0 + β1x1i + β2x2i + β3x1i × x2i + ui
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(Carleton et al., 2022)

Gender changes the relationship between air pollution and labor
productivity (Graff-Zivin and Neidell, 2021)
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Interactions

In general, interaction models should be used when the level of one
variable in�uences the relationship between the outcome and another
variables

For example:

Income changes the relationship between extreme heat and mortality
(Carleton et al., 2022)

Gender changes the relationship between air pollution and labor
productivity (Graff-Zivin and Neidell, 2021)

Other examples?

yi = β0 + β1x1i + β2x2i + β3x1i × x2i + ui
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Interactions

Interpreting interaction models means you have to consider the
interaction term when computing slopes.

For example: What is the "slope" of the relationship between  and ?

yi = β0 + β1x1i + β2x2i + β3x1i × x2i + ui

y x1
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Interactions

Interpreting interaction models means you have to consider the
interaction term when computing slopes.

For example: What is the "slope" of the relationship between  and ?

Key insight: Higher  increases the slope of the relationship between 
and ! The inverse is also true.

For two continuous random variables, we now have in�nitely many slopes
for each variable, depending on the level of the other independent
variable.

yi = β0 + β1x1i + β2x2i + β3x1i × x2i + ui

y x1

yi = β0 + (β1 + β3x2i)x1i + β2x2i + ui

xi2 y

x1
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Interactions
Putting it all in one place...interaction models with two continuous
variables:

yi = β0 + β1x1i + β2x2i + β3x1i × x2i + ui
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Interactions
Putting it all in one place...interaction models with two continuous
variables:

 is the difference in the effect of  on  between an individual with
 and an individual with 

 is also the difference in the effect of  on  between an individual
with  and an individual with 

 is the predicted level of  when both  and  are zero
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variables:

 is the difference in the effect of  on  between an individual with
 and an individual with 

 is also the difference in the effect of  on  between an individual
with  and an individual with 

 is the predicted level of  when both  and  are zero

 is the effect of  on  when  is zero

yi = β0 + β1x1i + β2x2i + β3x1i × x2i + ui
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Interactions
Putting it all in one place...interaction models with two continuous
variables:

 is the difference in the effect of  on  between an individual with
 and an individual with 

 is also the difference in the effect of  on  between an individual
with  and an individual with 

 is the predicted level of  when both  and  are zero

 is the effect of  on  when  is zero

 is the effect of  on  when  is zero

yi = β0 + β1x1i + β2x2i + β3x1i × x2i + ui

β3 x1 y

x2 = ℓ + 1 x2 = ℓ

β3 x2 y

x1 = ℓ + 1 x1 = ℓ

β0 y x1 x2

β1 x1 y x2

β2 x2 y x1
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Interactions in R
This will be the focus of Lab on Thursday. As a preview...just like many other
aspects of regression analysis, interactions are easy to implement but
dif�cult to carefully interpret in R :
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Interactions in R
This will be the focus of Lab on Thursday. As a preview...just like many other
aspects of regression analysis, interactions are easy to implement but
dif�cult to carefully interpret in R :

summary(lm(hwy ~ displ + year + displ:year, data = mpg))

#> 
#> Call:
#> lm(formula = hwy ~ displ + year + displ:year, data = mpg)
#> 
#> Residuals:
#>     Min      1Q  Median      3Q     Max 
#> -7.8595 -2.4360 -0.2103  1.6037 15.3677 
#> 
#> Coefficients:
#>                Estimate Std. Error t value Pr(>|t|)    
#> (Intercept)     35.7922     0.9794  36.546   <2e-16 ���
#> displ           -3.7684     0.2788 -13.517   <2e-16 ���
#> year2008         0.3445     1.4353   0.240    0.811    
#> displ:year2008   0.3052     0.3882   0.786    0.433    
#> ���
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Multicollinearity

What is it?

When 2 (collinearity) or more (multicollinearity) of your independent
variables are highly correlated with one another

yi = β0 + β1x1i + β2x2i + ⋯ + βkxki + ui
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Multicollinearity

What is it?

When 2 (collinearity) or more (multicollinearity) of your independent
variables are highly correlated with one another

What is the problem?

Coef�cients change substantially with small changes in independent
variables
Illogical/unexpected coef�cients

yi = β0 + β1x1i + β2x2i + ⋯ + βkxki + ui

32 / 36



Multicollinearity

Why might it happen?

Too many independent variables ("overspeci�ed" model)
Including dummy variable for your reference group
True population correlation between variables is high
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Multicollinearity
Easy check: ggpairs() , pairs() , etc.
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Multicollinearity

What to do about it?

More data helps, if possible

Check if some variables should be omitted based on theory/conceptual
model (e.g., reference group dummy)?

Eliminate highly correlated variables (ensure your interpretation
changes accordingly)

E.g., temperature and humidity
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Slides created via the R package xaringan.

Some slides and slide components were borrowed from Ed Rubin's
awesome course materials.
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https://github.com/yihui/xaringan
https://github.com/edrubin/EC421S20

