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Announcements/check-in
Assignment 04 posted, due 12/08

A note on depth in coming lectures

No class 11/23

Final projects: due in 3.5 weeks!

Presentations: 12/12 4:00-7:00pm (Bren Hall 1424)
Blog posts: 12/15

2 / 59



Today
What are time series data?
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What are time series data?What are time series data?
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What are time series data?
Up to this point, we focused on cross-sectional data.

Sampled across a population (e.g., people, counties, countries).
Sampled at one moment in time (e.g., Jan. 1, 2015).
We had  individuals, each indexed  in .n i {1, … , n}
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What are time series data?
Up to this point, we focused on cross-sectional data.

Sampled across a population (e.g., people, counties, countries).
Sampled at one moment in time (e.g., Jan. 1, 2015).
We had  individuals, each indexed  in .

Today, we focus on a different type of data: time-series data.

Sampled within one unit/individual (e.g., Oregon).
Observe multiple times for the same unit (e.g., Oregon: 1990–2020).
We have  time periods, each indexed  in .

n i {1, … , n}

T t {1, … , T}
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Time series data: Example
US monthly births, 1933–2015: Classic time-series graph
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Time series data: Example
US monthly births, 1933–2015: Newfangled time-series graph
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Time series data: Example
US monthly births per 30 days, 1933–2015: Newfangled time-series graph
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You already have (many of) the tools
Time series data open some new questions and new challenges for
statistical analysis
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You already have (many of) the tools
Time series data open some new questions and new challenges for
statistical analysis

But you already have many of the tools you need!

E.g., recall:

Description of airquality  data:

Daily air quality measurements in New York, May to September
1973.

These are time series data and we already ran an OLS regression with
them!

Ozonet = β0 + β1Tempt + εt
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You already have (many of) the tools
Ozonet = β0 + β1Tempt + εt

Plot: geom_smooth()  with se = TRUE
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You already have (many of) the tools
Let date indicate the date, ranging from May, 1 to September 31, 1973.

We can also estimate:

airqts = airquality %>% mutate(date = make_datetime(1973, Month,Day))
head(airqts)
#>   Ozone Solar.R Wind Temp Month Day       date
#> 1    41     190  7.4   67     5   1 1973-05-01
#> 2    36     118  8.0   72     5   2 1973-05-02
#> 3    12     149 12.6   74     5   3 1973-05-03
#> 4    18     313 11.5   62     5   4 1973-05-04
#> 5    NA      NA 14.3   56     5   5 1973-05-05
#> 6    28      NA 14.9   66     5   6 1973-05-06

Ozonet = β0 + β1datet + εt
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You already have (many of) the tools
Let date indicate the date, ranging from May, 1 to September 31, 1973.

We can also estimate:

airqts = airquality %>% mutate(date = make_datetime(1973, Month,Day))
head(airqts)
#>   Ozone Solar.R Wind Temp Month Day       date
#> 1    41     190  7.4   67     5   1 1973-05-01
#> 2    36     118  8.0   72     5   2 1973-05-02
#> 3    12     149 12.6   74     5   3 1973-05-03
#> 4    18     313 11.5   62     5   4 1973-05-04
#> 5    NA      NA 14.3   56     5   5 1973-05-05
#> 6    28      NA 14.9   66     5   6 1973-05-06

Regression of Ozone on date estimates a linear trend in ozone
Tip: make_datetime()  from the lubridate  package (handy for dates and
times)

Ozonet = β0 + β1datet + εt
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You already have (many of) the tools

summary(lm(Ozone ~ date, data = airqts))
#> 
#> Call:
#> lm(formula = Ozone ~ date, data = airqts)
#> 
#> Residuals:
#>    Min     1Q Median     3Q    Max 
#> -42.32 -24.58  -8.39  20.46 122.05 
#> 
#> Coefficients:
#>              Estimate Std. Error t value Pr(>|t|)  
#> (Intercept) -1.04e+02   8.59e+01   -1.21    0.230  
#> date         1.30e-06   7.65e-07    1.70    0.092 .
#> ���
#> Signif. codes:  0 '���' 0.001 '��' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#> 
#> Residual standard error: 32.7 on 114 degrees of freedom
#>   (37 observations deleted due to missingness)
#> Multiple R-squared:  0.0247,    Adjusted R-squared:  0.0162 
#> F-statistic: 2.89 on 1 and 114 DF,  p�value: 0.092

Ozonet = β0 + β1datet + εt
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You already have (many of) the tools
Ozonet = β0 + β1datet + εt
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You already have (many of) the tools
Many of the summary statistics, regression, and hypothesis testing tools
apply to time series data without much adjustment
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You already have (many of) the tools
Many of the summary statistics, regression, and hypothesis testing tools
apply to time series data without much adjustment

But there are some new features we want to explore:

Does my data have exhibit trending behavior?
Is there seasonality?
Is my data cyclical?

And some new challenges to overcome:

Additional assumptions needed in OLS
Threat to existing assumptions: Are our error terms independent? Is
exogeneity harder now?
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DecompositionDecomposition

15 / 5915 / 59



Time series components

Seasonality
A repeated pattern over known and equal periods (e.g., month; quarter,
decade)
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Time series components

Seasonality
A repeated pattern over known and equal periods (e.g., month; quarter,
decade)

Cyclicality
A broader cyclical trend with unknown and/or unequal periods (e.g.,
business cycle, ENSO)

Trends
Long-term increase or decrease in the data (not necessarily linear!)
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Time series components
Often, seasonality, cyclicality and trends occur all at the same time:
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Time series components

For many time series,* we can decompose the data into:

where  is a seasonal component,  is the cycle and trend components,
and  is the remainder.

yt = St + Tt + Rt

St Tt

Rt
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Time series components

For many time series,* we can decompose the data into:

where  is a seasonal component,  is the cycle and trend components,
and  is the remainder.

Decomposition allows us to isolate each component of the time series
visually and quantitatively.

yt = St + Tt + Rt

St Tt

Rt

[*]: This decomposition is "additive", which works for many time series. See Hyndman for details on more
complex "multiplicative" decomposition.
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Decomposition: Moving averages
A key tool in "decomposing" a time series into its component parts is
computing a moving average
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A key tool in "decomposing" a time series into its component parts is
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A moving average of order m is computed as:

where .

T̂ t =
k

∑
j=−k

yt+j

1

m

m = 2k + 1
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Decomposition: Moving averages
A key tool in "decomposing" a time series into its component parts is
computing a moving average

A moving average of order m is computed as:

where .

The moving average gives you an estimate of the irregular trend-cycle
component  at time t by averaging values of the time series within k
periods of t

T̂ t =
k

∑
j=−k

yt+j

1

m

m = 2k + 1

T
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Moving average example
Computing an  moving average over the data plotted on the last
slide:

df = as.data.frame(cbind(x, y)) # these are the data we plotted above
df = df %>% mutate(ma = slider��slide_dbl(y, mean,
                .before = 2, .after = 2, .complete = TRUE))

m = 5
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Moving average example
Computing an  moving average over the data plotted on the last
slide:

df = as.data.frame(cbind(x, y)) # these are the data we plotted above
df = df %>% mutate(ma = slider��slide_dbl(y, mean,
                .before = 2, .after = 2, .complete = TRUE))

Helpful package: slider  (there are others too!)
Option .complete=TRUE  ensures only moving windows with complete
data are computed

m = 5
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Moving average example
Computing an  moving average:m = 5
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Moving average example
Computing an  moving average:m = 15
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Classical decomposition

Step 1: estimate a moving average

Estimate an -moving average to compute m T̂ t
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Classical decomposition

Step 1: estimate a moving average

Estimate an -moving average to compute 

Step 2: calculate the de-trended series

De-trended series 

Step 3: calculate seasonality

Simple average over de-trended series for each season 

Step 4: remainder

Whatever is left over

m T̂ t

= yt − T̂ t

s
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Classical decomposition
Consider a time series of monthly totals of accidental deaths in the USA:

df = USAccDeaths
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Classical decomposition

Let's decompose the accidental deaths time series.

You can do this by hand, or...

25 / 59



Classical decomposition

Let's decompose the accidental deaths time series.

You can do this by hand, or...

decomp = as_tsibble(USAccDeaths) %>%
  model(
    classical_decomposition(value, type = "additive")
  ) %>%
  components() 
head(decomp)
#> # A dable: 6 x 7 [1M]
#> # Key:     .model [1]
#> # :        value = trend + seasonal + random
#>   .model                         index value trend seasonal random season_adj
#>   <chr>                          <mth> <dbl> <dbl>    <dbl>  <dbl>         <d
#> 1 "classical_decomposition(v… 1973 Jan  9007    NA    -806.     NA         98
#> 2 "classical_decomposition(v… 1973 Feb  8106    NA   -1523.     NA         96
#> 3 "classical_decomposition(v… 1973 Mar  8928    NA    -741.     NA         96
#> 4 "classical_decomposition(v… 1973 Apr  9137    NA    -515.     NA         96
#> 5 "classical_decomposition(v… 1973 May 10017    NA     340.     NA         96
#> 6 "classical_decomposition(v… 1973 Jun 10826    NA     745.     NA        10025 / 59



Classical decomposition

You can do this by hand, or...

as_tsibble(USAccDeaths) %>%
  model(
    classical_decomposition(value, type = "additive")
  ) %>%
  components() %>%
  autoplot() +
  labs(title = "Classical additive decomposition of accidental deaths in the USA
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Classical decomposition

You can do this by hand, or...
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Decomposition
As outlined in Hyndman & Athanasopoulos, classical decomposition
has some drawbacks:

Assumes the seasonal component is �xed over time
Loses data at the start and end (due to moving average)
Can be sensitive to outliers/short-run anomalous behavior
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Decomposition
As outlined in Hyndman & Athanasopoulos, classical decomposition
has some drawbacks:

Assumes the seasonal component is �xed over time
Loses data at the start and end (due to moving average)
Can be sensitive to outliers/short-run anomalous behavior

Seasonal and Trend Decomposition using Loess (STL)

Flexible and versatile method
Seasonal component can change over time
Robust to outliers
use STL()  in place of classical_decomposition()
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Decomposition

Why decompose a time series?
�. To better understand your data

Do summers tend to have higher crime?
Is there an positive trend in ocean temperatures?
Does deforestation follow business cycles?
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Decomposition

Why decompose a time series?
�. To better understand your data

Do summers tend to have higher crime?
Is there an positive trend in ocean temperatures?
Does deforestation follow business cycles?

�. To aid in forecasting

You can forecast using estimated seasonality and trend-cycles
Details are not covered in this class, see Hyndman &
Athanasopoulos for an overview and implementation in R
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AutocorrelationAutocorrelation
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Autocorrelation
Many time series data are autocorrelated, meaning past values are
correlated with future values (note: also called serial correlation)
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31 / 59



Autocorrelation
Many time series data are autocorrelated, meaning past values are
correlated with future values (note: also called serial correlation)

That is,  may be correlated with , , , etc.

This matters both for interpreting OLS output (in a few slides), and for
understanding our data (helpful for identifying any seasonality).

yt yt−1 yt−2 yt−12
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Autocorrelation
For example:

Today's temperature is positively correlated with yesterday's
temperature: cor(yt, yt−1) > 0
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months ago: 
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cor(yt, yt−182) < 0
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Autocorrelation
For example:

Today's temperature is positively correlated with yesterday's
temperature: 

Today's temperature is negatively correlated with temperatures 6
months ago: 

Today's temperature may have no correlation with temperatures 7 days
ago: 

cor(yt, yt−1) > 0

cor(yt, yt−182) < 0

cor(yt, yt−7) = 0
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Autocorrelation
We can describe autocorrelation using an autocorrelation function or ACF.
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Autocorrelation
We can describe autocorrelation using an autocorrelation function or ACF.

Consider a monthly temperature time series for Nottingham Castle
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Autocorrelation Function (ACF)
acf(nottdf$temperature, lag.max=12)

34 / 59



Autocorrelation Function (ACF)
acf()  plots an ACF for you!

The height of each line indicates the correlation between temperature
today and temperature l days ago

Con�dence intervals are shown in blue by default -- indicate if
 is statistically distinguishable from zero (or not)

Helps to identify periodicity of seasonality

cor(yt, yt−l)
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Autocorrelation Function (ACF)
acf()  plots an ACF for you!

The height of each line indicates the correlation between temperature
today and temperature l days ago

Con�dence intervals are shown in blue by default -- indicate if
 is statistically distinguishable from zero (or not)

Helps to identify periodicity of seasonality

De�nition: white noise is a random time series in which there is
no correlation across time periods (rare in the real world!). Here,
the ACF would look noisy and correlations would largely fall
within the blue con�dence interval.

cor(yt, yt−l)
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Time series and OLSTime series and OLS
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Intro to time series and OLS
Our model now looks something like

salmont = β0 + β1passaget + ut
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Intro to time series and OLS
Our model now looks something like

or perhaps

maybe even

where  denotes the time period prior to  (lagged stream passage or
salmon returns).

salmont = β0 + β1passaget + ut

salmont = β0 + β1passaget + β3passaget−1 + ut

salmont = β0 + β1passaget + β3passaget−1 + β4salmont−1 + ut

t − 1 t
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Time-series models

Updated OLS assumptions
�. New: Weakly persistent outcomes—essentially,  in the distant

period  is weakly correlated with period  (when  is "big").

�.  is a linear function of its parameters and disturbance.

�. There is some variation in our explanatory variables

�. Harder to satisfy: The  have conditional mean of zero (exogeneity),
.

�. Harder to satisfy: The  are normally distributed and homoskedastic
with zero correlation between  and , i.e., ,

, and .

xt+k

t + k xt k

yt

ut

E[ut|X] = 0

ut

ut us ut
iid
∼ N(0, σ2)

Var(ut|X) = Var(ut) = σ2 Cor(ut, us|X) = 0
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Time-series models

Model options
Time-series modeling boils down to two classes of models.

�. Static models: Do not allow for persistent effects.

�. Dynamic models: Allow for persistent effects.
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Time-series models

Model options
Time-series modeling boils down to two classes of models.

�. Static models: Do not allow for persistent effects.

�. Dynamic models: Allow for persistent effects.

Models with lagged explanatory variables

Autoregressive, distributed-lag (ADL) models
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Model options
Option 1: Static models

Static models assume the outcome depends upon only the current period.

salmont = β0 + β1passaget + ut
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Static models assume the outcome depends upon only the current period.

Here, we must believe that stream passage immediately affects the number
of salmon returns and does not affect on the numbers of returns in the
future.

We also need to believe current salmon returns do not depend upon
previous stream passage conditions.
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Model options
Option 1: Static models

Static models assume the outcome depends upon only the current period.

Here, we must believe that stream passage immediately affects the number
of salmon returns and does not affect on the numbers of returns in the
future.

We also need to believe current salmon returns do not depend upon
previous stream passage conditions.

Can be a very restrictive way to consider time-series data.

salmont = β0 + β1passaget + ut
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Model options
Option 2: Dynamic models

Dynamic models allow the outcome to depend upon other periods.
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Model options
Option 2a: Dynamic models with lagged explanatory variables

These models allow the outcome to depend upon the explanatory
variable(s) in other periods.

salmont =β0 + β1passaget + β2passaget−1+

β3passaget−2 + β4passaget−3 + ut
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Model options
Option 2a: Dynamic models with lagged explanatory variables

These models allow the outcome to depend upon the explanatory
variable(s) in other periods.

Here, passage immediately affects the number of salmon returns and
affects future numbers of returns.

In other words: salmon returns today depend today's stream passage
conditions and lags of passage—e.g., last year's passage, the year before
last, etc...
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Model options
Option 2a: Dynamic models with lagged explanatory variables

These models allow the outcome to depend upon the explanatory
variable(s) in other periods.

Here, passage immediately affects the number of salmon returns and
affects future numbers of returns.

In other words: salmon returns today depend today's stream passage
conditions and lags of passage—e.g., last year's passage, the year before
last, etc...

Estimate total effects by summing lags' coef�cients, e.g., .

salmont =β0 + β1passaget + β2passaget−1+

β3passaget−2 + β4passaget−3 + ut

β1 + β2 + β3 + β4
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Model options
Option 2a: Dynamic models with lagged explanatory variables

These models allow the outcome to depend upon the explanatory
variable(s) in other periods.

Here, passage immediately affects the number of salmon returns and
affects future numbers of returns.

In other words: salmon returns today depend today's stream passage
conditions and lags of passage—e.g., last year's passage, the year before
last, etc...

Estimate total effects by summing lags' coef�cients, e.g., .

Note: We still assume current salmon returns don't affect future returns.

salmont =β0 + β1passaget + β2passaget−1+

β3passaget−2 + β4passaget−3 + ut

β1 + β2 + β3 + β4

42 / 59



Model options
Lagged explanatory variables in empirical research:

Left: coef�cients on lagged temperature variables
Right: sum of coef�cients (cumulative effect) on cyclone intensity
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Model options
Lagged explanatory variables in empirical research:

Left: coef�cients on lagged temperature variables
Right: sum of coef�cients (cumulative effect) on cyclone intensity

Q: Can you think of other examples of lagged effects?
43 / 59



Model options
Option 2b: Autoregressive distributed-lag (ADL) models

These models allow the outcome to depend upon the explanatory
variable(s) and/or the outcome variable in prior periods.

salmont = β0 + β1passaget + β2passaget−1 + β3salmont−1 + ut
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Model options
Option 2b: Autoregressive distributed-lag (ADL) models

These models allow the outcome to depend upon the explanatory
variable(s) and/or the outcome variable in prior periods.

Here, current passage affects current salmon and future salmon.

salmont = β0 + β1passaget + β2passaget−1 + β3salmont−1 + ut
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Model options
Option 2b: Autoregressive distributed-lag (ADL) models

These models allow the outcome to depend upon the explanatory
variable(s) and/or the outcome variable in prior periods.

Here, current passage affects current salmon and future salmon.

In addition, current salmon returns affect future salmon returns—we're
allowing lags of the outcome variable.

salmont = β0 + β1passaget + β2passaget−1 + β3salmont−1 + ut
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Do you need an ADL?

Hint: Autocorrelation Function (ACF)
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Autoregressive distributed-lag models

Numbers of lags
ADL models are often speci�ed as , where

 is the (maximum) number of lags for the outcome variable.

 is the (maximum) number of lags for explanatory variables.

ADL(p, q)

p

q
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Example: 
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ADL(1, 0)
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Autoregressive distributed-lag models

Numbers of lags
ADL models are often speci�ed as , where

 is the (maximum) number of lags for the outcome variable.
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p
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Autoregressive distributed-lag models

Numbers of lags
ADL models are often speci�ed as , where

 is the (maximum) number of lags for the outcome variable.

 is the (maximum) number of lags for explanatory variables.

Example: 

Example: 

ADL(p, q)

p

q

ADL(1, 0)

salmont = β0 + β1passaget + β2salmont−1 + ut

ADL(2, 2)
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Autoregressive distributed-lag models

Numbers of lags
ADL models are often speci�ed as , where

 is the (maximum) number of lags for the outcome variable.

 is the (maximum) number of lags for explanatory variables.

Example: 

Example: 

ADL(p, q)

p

q

ADL(1, 0)

salmont = β0 + β1passaget + β2salmont−1 + ut

ADL(2, 2)

salmont =β0 + β1passaget + β2passaget−1 + β3passaget−2

+ β4salmont−1 + β5salmont−2 + ut
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Autoregressive distributed-lag models

Complexity
Due to their lags, ADL models actually estimate even more complex
relationships than you might �rst guess.
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Autoregressive distributed-lag models

Complexity
Due to their lags, ADL models actually estimate even more complex
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Autoregressive distributed-lag models

Complexity
Due to their lags, ADL models actually estimate even more complex
relationships than you might �rst guess.

Consider ADL(1, 0): 

Write out the model for period :

which we can substitute in for  in the �rst equation, i.e.,

salmont = β0 + β1passaget + β2salmont−1 + ut

t − 1

salmont−1 = β0 + β1passaget−1 + β2salmont−2 + ut−1

salmont−1

salmont =β0 + β1passaget+

β2(β0 + β1passaget−1 + β2salmont−2 + ut−1)


salmont−1

+ ut
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Complexity
Continuing...

salmont =β0 + β1passaget+

β2(β0 + β1passaget−1 + β2salmont−2 + ut−1)


salmont−1

+ ut

=β0 (1 + β2) + β1passaget + β1β2passaget−1+

β2
2 salmont−2 + ut + β2ut−1
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Complexity
Continuing...

We could then substitute in the equation for , , ...

salmont =β0 + β1passaget+

β2(β0 + β1passaget−1 + β2salmont−2 + ut−1)


salmont−1

+ ut

=β0 (1 + β2) + β1passaget + β1β2passaget−1+

β2
2 salmont−2 + ut + β2ut−1

salmont−2 salmont−3
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Complexity
Eventually we arrive at

salmont =β0 (1 + β2 + β2
2 + β3

2 + ⋯) +

β1 (passaget + β2passaget−1 + β2
2 passaget−2 + ⋯) +

ut + β2ut−1 + β2
2ut−2 + ⋯

49 / 59



Complexity
Eventually we arrive at

The point?

salmont =β0 (1 + β2 + β2
2 + β3

2 + ⋯) +

β1 (passaget + β2passaget−1 + β2
2 passaget−2 + ⋯) +

ut + β2ut−1 + β2
2ut−2 + ⋯

49 / 59



Complexity
Eventually we arrive at

The point?

By including just one lag of the dependent variable—as in a ADL(1, 0)—we
implicitly include many lags of the explanatory variables and
disturbances.†

salmont =β0 (1 + β2 + β2
2 + β3

2 + ⋯) +

β1 (passaget + β2passaget−1 + β2
2 passaget−2 + ⋯) +

ut + β2ut−1 + β2
2ut−2 + ⋯

† These lags enter into the equation in a very speci�c way—not the most �exible speci�cation.
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Time-series models

Updated OLS assumptions
�. New: Weakly persistent outcomes—essentially,  in the distant

period  is weakly correlated with period  (when  is "big").

�.  is a linear function of its parameters and disturbance.

�. There is some variation in our explanatory variables

�. Harder to satisfy: The  have conditional mean of zero (exogeneity),
.

�. Harder to satisfy: The  are normally distributed and homoskedastic
with zero correlation between  and , i.e., ,

, and .

xt+k

t + k xt k

yt

ut

E[ut|X] = 0

ut

ut us ut
iid
∼ N(0, σ2)

Var(ut|X) = Var(ut) = σ2 Cor(ut, us|X) = 0
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Unbiased coef�cients
As before, the unbiased-ness of OLS is going to depend upon our
exogeneity assumption, i.e., .E[ut|X] = 0
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Unbiased coef�cients
As before, the unbiased-ness of OLS is going to depend upon our
exogeneity assumption, i.e., .

We can split this assumption into two parts.

�. The disturbance  is independent of the explanatory variables in the
same period (i.e., ).

�. The disturbance  is independent of the explanatory variables in the
other periods (i.e.,  for ).

We need both of these parts to be true for OLS to be unbiased.

E[ut|X] = 0

ut

Xt

ut

Xs s ≠ t
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Unbiased coef�cients
We need both parts of our exogeneity assumption for OLS to be unbiased:

I.e., to guarantee the numerator equals zero, we need —for both
 and  .

E[ut|X] = 0

E[ut|Xt] = 0 E[ut|Xs] = 0 (s ≠ t)
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Unbiased coef�cients
We need both parts of our exogeneity assumption for OLS to be unbiased:

I.e., to guarantee the numerator equals zero, we need —for both
 and  .

The second part of our exogeneity assumption—requiring that  is
independent of all regressors in other periods—fails with dynamic models
with lagged outcome variables.

Thus, OLS is biased for dynamic models with lagged outcome variables.

E[ut|X] = 0

E[ut|Xt] = 0 E[ut|Xs] = 0 (s ≠ t)

ut
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Unbiased coef�cients
To see why dynamic models with lagged outcome variables violate our
exogeneity assumption, consider two periods of our simple ADL(1, 0) model.

salmont = β0 + β1passaget + β2salmont−1 + ut

salmont+1 = β0 + β1passaget+1 + β2salmont + ut+1

(1)

(2)
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Unbiased coef�cients
To see why dynamic models with lagged outcome variables violate our
exogeneity assumption, consider two periods of our simple ADL(1, 0) model.

In ,  clearly correlates with .

However,  is a regressor in  (lagged dependent variable).

∴ The disturbance in   correlates with a regressor in  .

This correlation violates the second part of our exogeneity requirement.

salmont = β0 + β1passaget + β2salmont−1 + ut

salmont+1 = β0 + β1passaget+1 + β2salmont + ut+1

(1)

(2)

(1) ut salmont

salmont (2)

t (ut) t + 1 (salmont)
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Unbiased coef�cients
All is not lost.
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Unbiased coef�cients
All is not lost.

If we have contemporaneous exogeneity, OLS is what we call consistent: as
,  (you need a lot of data!)

Contemporaneous exogeneity: each disturbance is uncorrelated with the
explanatory variables in the same period, i.e.,

T → ∞ β̂ → β

E[ut|Xt] = 0
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Unbiased coef�cients
All is not lost.

If we have contemporaneous exogeneity, OLS is what we call consistent: as
,  (you need a lot of data!)

Contemporaneous exogeneity: each disturbance is uncorrelated with the
explanatory variables in the same period, i.e.,

With contemporaneous exogeneity, OLS estimates for the coef�cients in a
time series model are consistent (whew)

T → ∞ β̂ → β

E[ut|Xt] = 0
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Autocorrelation in the error term
The time series version of our assumption about OLS errors includes the
following:

There must be zero correlation between  and , i.e.,
.

ut us

Cor(ut, us|X) = 0
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Autocorrelation in the error term
The time series version of our assumption about OLS errors includes the
following:

There must be zero correlation between  and , i.e.,
.

When might this fail?

Anytime you have unobserved variables that correlate over time and
in�uence the outcome

Are we worried? In a static model or with lagged explanatory variables:

OLS is inef�cient, i.e., no longer the lowest variance unbiased estimator
That is, your standard errors are no longer correct
However, violating this assumption does not introduce bias (whew!)

ut us

Cor(ut, us|X) = 0
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Autocorrelation

OLS and lagged outcome variables
Consider a model with one lag of the outcome variable—ADL(1, 0)—model
with AR(1) disturbances

where

salmont = β0 + β1passaget + β2salmont−1 + ut

ut = ρut−1 + εt
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with AR(1) disturbances

where

Problem: Both  (a regressor in the model for time ) and  (the
disturbance for time ) depend upon . I.e., a regressor is correlated with
its contemporaneous disturbance.

Q: Why is this a problem?
A: It violates contemporaneous exogeneity
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Autocorrelation

OLS and lagged outcome variables
Consider a model with one lag of the outcome variable—ADL(1, 0)—model
with AR(1) disturbances

where

Problem: Both  (a regressor in the model for time ) and  (the
disturbance for time ) depend upon . I.e., a regressor is correlated with
its contemporaneous disturbance.

Q: Why is this a problem?
A: It violates contemporaneous exogeneity, i.e., .

salmont = β0 + β1passaget + β2salmont−1 + ut

ut = ρut−1 + εt

salmont−1 t ut

t ut−1

Cov(xt, ut) ≠ 0
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Testing for serial/autocorrelation
Fortunately, it's easy to test for autocorrelation to evaluate whether
your model is biased (lagged dependent variable) and/or inef�cient
(lagged explanatory variables)

57 / 59



Testing for serial/autocorrelation
Fortunately, it's easy to test for autocorrelation to evaluate whether
your model is biased (lagged dependent variable) and/or inef�cient
(lagged explanatory variables)

Basic idea:

Run OLS using your preferred speci�cation
Recover residuals 
Test whether  is statistically distinguishable from zero in

Implement in R  with: dwtest() , bgtest()

et = yt − ŷ t

θ̂

et = θ1et−1 + θ2et−2+. . .
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Testing for serial/autocorrelation
Fortunately, it's easy to test for autocorrelation to evaluate whether
your model is biased (lagged dependent variable) and/or inef�cient
(lagged explanatory variables)

Basic idea:

Run OLS using your preferred speci�cation
Recover residuals 
Test whether  is statistically distinguishable from zero in

Implement in R  with: dwtest() , bgtest()

Autocorrelation may arise because your model is misspeci�ed.
Consider adding additional lags and/or explanatory variables if errors
are correlated

et = yt − ŷ t

θ̂

et = θ1et−1 + θ2et−2+. . .
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Summary: Time series and OLS
Our model now has  subscripts for time periods.

Dynamic models allow lags of explanatory and/or outcome variables.

We changed our exogeneity assumption to contemporaneous
exogeneity, i.e., 

Including lags of outcome variables can lead to biased coef�cient
estimates from OLS (but fortunately they are still consistent)

Lagged explanatory variables make OLS inef�cient (i.e., mess up our
standard errors)

Autocorrelation in the error + lagged dependent variables make OLS
biased. Watch out! Test for serial/autocorrelation, check for
misspeci�cation of your model.

t

E[ut|Xt] = 0
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Slides created via the R package xaringan.

Some slide components were borrowed from Ed Rubin and Allison Horst.
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