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Announcements/check-in

Final Projects

3-minute in-class presentation: 12/12, 4-7pm, Bren Hall 1424 -- with
snacks! I will randomly allocate slots and post the presentation order
by 12/07
Blog post/write up: due 12/9, 5pm, send to me and Sandy via email in
.html  and .pdf  formats
See guidelines for details on expectations for presentation and write up
If you are not a MEDS student and/or do not want a blog post, the .pdf
alone is �ne
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Announcements/check-in

Course evaluations

Incredibly valuable for me, this course, and for the development of
MEDS more broadly!
Some changes from previous years' feedback:

Added logistic regression
Integrated more code snippets into lecture materials
More environmental examples (too much economics...)
Slower pace of lecture content
More de�nitions of mathematical objects
More lectures on stats in practice
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Announcements/check-in

Class plan for remainder of the quarter

11/28: time series + spatial data
11/30: spatial interpolation
12/05: spatial kriging in R
12/07: guest lecture -- stats in ecohydrology!
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Today
Refresher: types of spatial data

Vectors/objects, rasters/�elds
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Today
Refresher: types of spatial data

Vectors/objects, rasters/�elds

A common challenge: spatial interpolation

Sample vs. population, points to �elds

Kriging: a powerful form of interpolation

Variogram, kriging
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Types of spatial dataTypes of spatial data
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Spatial data

Spatial Data can generally split into:
Vector Data
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Spatial data

Spatial Data can generally split into:
Vector Data: points, lines, and polygons.

Raster Data: a grid of equally sized rectangles.

An alternative framing: object view versus �eld view

Object View: The study region (and world) is a series of entities located
in space. Examples: Points representing cities. Non-continuous polygons
representing cities.

Field View: Every location within the study region (and world) has a
measurable value. Examples: Elevation. Temperature. Wind direction.
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Spatial data
Q: Is there a best data type to represent objects or �elds?

8 / 49



Spatial data
Q: Is there a best data type to represent objects or �elds?

A: Usually, but it depends.

8 / 49



Spatial data
Q: Is there a best data type to represent objects or �elds?

A: Usually, but it depends.

Usually it will be easier to represent objects with vector data and �elds
with raster data, but ultimately this depends on what analysis you want
to run

8 / 49



Spatial data
Q: Is there a best data type to represent objects or �elds?

A: Usually, but it depends.

Usually it will be easier to represent objects with vector data and �elds
with raster data, but ultimately this depends on what analysis you want
to run

Luckily, R  makes it easy to switch back and forth (but we need to be
careful and intentional when transforming!)
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Spatial interpolationSpatial interpolation
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Spatial interpolation

In environmental data science, we are often interested in
modeling �elds
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Spatial interpolation

But we are doing statistics!
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Spatial interpolation

But we are doing statistics!

That means we only have data from a sample, not a census of the
population
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Spatial interpolation
Samples taken from a continuous spatial �eld often raise the need for
spatial interpolation
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Spatial interpolation
Samples taken from a continuous spatial �eld often raise the need for
spatial interpolation

De�nition:

Spatial interpolation is the process of using a sample of observed points
to estimate values for all locations in a study region

For example:

Predicting "gold grades" across South Africa using a few borehole
samples (the problem of Daniel Krige!)
Predicting depth to groundwater across California using monitoring
wells
Predicting air pollution across China using monitoring stations
??
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Spatial interpolation in math
Let  indicate the value (e.g., elevation) at a location  that was
not sampled

Z(x0) x0
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Spatial interpolation in math
Let  indicate the value (e.g., elevation) at a location  that was
not sampled

Let  for  indicate the values for locations 
that were sampled

Spatial interpolation aims to predict  using a linear combination of
the values in the sampled locations:

where  are weights applied to each sampled location.

All spatial interpolation methods assume or derive a set of 's to
compute 's

Z(x0) x0

Z(xi) i = 1, . . . m i = 1, . . . , m

Z(x0)

Ẑ(x0) =
m

∑
i=1

λiZ(xi)

λi

λ

Ẑ
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Interpolation in pictures
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Interpolation in one dimension
Consider one-dimensional space where values  depend on location z x
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Interpolation in two dimensions
Often we have data for an outcome  observed in 2-D space: z z(x, y)
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Interpolation methods

Polynomial regression
In one-dimensional space:

In two-dimensional space with  the unknown location:

Ẑ(x0) = β̂0 + β̂1x0 + β̂2x2
0+. . . +β̂

p
x

p
0

(x0, y0)

Ẑ(x0, y0) = β̂0 + β̂1x0 + β̂2y0 + β̂3x0y0 + β̂4x2
0 + β̂5y2

0 +. . .
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Ẑ(x0, y0) = β̂0 + β̂1x0 + β̂2y0 + β̂3x0y0 + β̂4x2
0 + β̂5y2

0 +. . .

18 / 49



Interpolation methods

Polynomial regression
In one-dimensional space:

In two-dimensional space with  the unknown location:

Pros: Easy, analytical expression, continuous & differentiable surface
Cons: Errors can be large, inexact

Exact: Predicts a value identical to the measured value.

Inexact: Does not predict a value identical to the measured value.

Ẑ(x0) = β̂0 + β̂1x0 + β̂2x2
0+. . . +β̂

p
x

p
0

(x0, y0)

Ẑ(x0, y0) = β̂0 + β̂1x0 + β̂2y0 + β̂3x0y0 + β̂4x2
0 + β̂5y2

0 +. . .
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Polynomial regression interpolation
This is just multiple linear regression using spatial information as the
independent variables

mod = lm(z~poly(x,8))
predictions = augment(mod)$.fitted
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Polynomial regression interpolation
This is just multiple linear regression using spatial information as the
independent variables.

In 2-D:

mod = lm(z~x + y + x�y + x2 + y2 + x2*y2)
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Interpolation methods

Nearest Neighbors (NN)
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Interpolation methods

Nearest Neighbors (NN)
Simple: Assign value of nearest observation in space

Creates what are called "Theissen Polygons", which allocate space to the
nearest sampled point 21 / 49



Nearest Neighbor interpolation
Q: What would the weight vector  look like for NN interpolation?λ
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Nearest Neighbor interpolation
Q: What would the weight vector  look like for NN interpolation?

Q: What type of function does NN interpolation produce for 1-D space?
[draw it!]

Pros: Easy, intuitive, �eld may actually be discontinuous, exact
Cons: Discontinuous, error-prone if �eld is smooth

Implementation in R

Easy with the voronoi()  function from the dismo  package:

library(dismo)
v �� voronoi(dta)
plot(v)

λ
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Nearest Neighbor interpolation
Q: What would the weight vector  look like for NN interpolation?

Q: What type of function does NN interpolation produce for 1-D space?
[draw it!]

Pros: Easy, intuitive, �eld may actually be discontinuous, exact
Cons: Discontinuous, error-prone if �eld is smooth

Implementation in R

Easy with the voronoi()  function from the dismo  package:

library(dismo)
v �� voronoi(dta)
plot(v)

Helpful tutorial here

λ
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https://rspatial.org/raster/analysis/4-interpolation.html


Interpolation methods

Inverse distance weighting
Basic idea: weights are a decreasing function of distance from  to x0 xi
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Interpolation methods

Inverse distance weighting
Basic idea: weights are a decreasing function of distance from  to 

Equivalently:

where  is the "power parameter" determining how fast the weight declines
as the distance between the points grows larger

x0 xi

Ẑ(x0) =
m

∑
i=1

Z(xi)Dist(xi, x0)−p

∑
m
i=1 Dist(xi, x0)−p

λIDW
i =

1/Dist(xi, x0)p

∑
m
i=1 1/Dist(xi, x0)p

p

23 / 49



Interpolation methods

Inverse distance weighting
Pros: Smooth, exact
Cons: Dif�cult/computationally intensive (you need to compute
distances for all pairs of points in the region!), all sampled observations
in�uence , have to choose  somehow, result can be "clumpy"Ẑ(x0) p
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Interpolation methods

Inverse distance weighting

Implementation in R

library(phylin)
idw(values, coords, grid, method = "Shepard", p = 2, R = 2, N = 15,
    distFUN = geo.dist, ���)

Note the method  argument: "Shepard" follows the math on the previous
slide
Note the p  argument: Need to specify power parameter
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Interpolation methods

There are many more!
Piecewise linear interpolation / Delany triangulation
Local polynomial regression
Radial basis function (RBF)
Kriging (of many forms)
Many new machine-learning based methods
Learn more in Li and Heap (2014)
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https://doi.org/10.1016/j.envsoft.2013.12.008


Enter: Kriging

Kriging is the most widely used form of spatial
interpolation in spatial statistics.
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Enter: Kriging

Kriging is the most widely used form of spatial
interpolation in spatial statistics.

Why?

It is �exible (i.e., less researcher decisions, more data-driven)
Under certain assumptions it is the "best linear unbiased estimate"
(sound like OLS yet??)
You can recover an estimate and a standard error (i.e., it is stochastic)

Next up: Kriging details!
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KrigingKriging
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Kriging: an origin story
The Witwatersrand ("Rand") in South Africa is known for its gold content.
Mining engineers wanted to know where in the Rand was most likely to
have a high gold content per block of ore.
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Kriging: an origin story
Many individual ore samples have been taken (vector data -- points)
Underlying data is the content of the rock (raster data -- �eld)
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Kriging: an origin story
Many individual ore samples have been taken (vector data -- points)
Underlying data is the content of the rock (raster data -- �eld)

Spatial interpolation is highly valuable!

Danie Krige's solution: [in his master's thesis!]
Use an estimator that minimizes the mean squared prediction error
(very similar to OLS)
Show that it has a bunch of nice properties relative to other forms
of spatial interpolation
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Blue = low gold content; Red =
high gold content
Zero correlation between
values in nearby locations
Can you predict the gold
content in location A based on
this sample?

Correlations in space
Q: If there is no correlation between values in nearby locations, can we
predict new values based on our sample?
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Blue = low gold content; Red =
high gold content
Positive correlation between
values in nearby locations
Now can you predict the gold
content in location A based on
this sample?
Why?

Correlations in space
Q: If there is no correlation between values in nearby locations, can we
predict new values based on our sample?
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Variogram
Key takeaway: quantifying spatial dependence is key to spatial
interpolation
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Variogram
Key takeaway: quantifying spatial dependence is key to spatial
interpolation

A variogram describes spatial dependence:

A variogram shows the variance of values within groups of
observations as a function of the distance between them

Key concept: Variograms give us a way of understanding how correlated
spatial observations are to those around them, and how that correlation
“decays” as points get further apart

Mining example: Variogram gives a measure of how much two samples
taken from the mining area will vary in gold percentage depending on the
distance between the samples. Samples farther apart will vary more than
those taken close together.
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Variogram
Let  be the value at location x, and  be the value at a location

 units away from .
Z(x) Z(x + h)

h x
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Variogram
Let  be the value at location x, and  be the value at a location

 units away from .

Variogram:

We often discuss the semi-variogram, which is:

Why? Recall:

So, for a "stationary" variogram, we have

Z(x) Z(x + h)

h x

2γ(x + h, x) = var(Z(x + h) − Z(x))

γ(x + h, x) = var(Z(x + h) − Z(x))
1

2

var(a − b) = var(a) + var(b) − 2cov(a, b)

γ(x + h, x) = var(Z(x)) − cov(Z(x), Z(x + h))
34 / 49



Variogram: in pictures
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Variogram: in pictures

Nugget: At , residual variance is from microscale effects or
measurement error
Sill: The stationary maximum variance -- no more covariance
Range: Separation distance beyond which there is no covariance

h = 0
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Estimating a (semi)variogram

Empirical semivariogram

γ̂(h ± δ) = ∑
(i,j)∈N(h±δ)

|zi − zj|
21

2N(h ± δ)
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Empirical semivariogram

Why?

You probably don't have many samples exactly  units apart
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Estimating a (semi)variogram

Empirical semivariogram

Why?

You probably don't have many samples exactly  units apart

How?

Draw "donuts" of width  and average distance  around each point
Compute differences in values for each pair of points, square them
Take an average!

γ̂(h ± δ) = ∑
(i,j)∈N(h±δ)

|zi − zj|
21

2N(h ± δ)

h

δ h
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Empirical variogram example
Bohling's Introduction to Geostatistics and Variogram Analysis
Porosity values in a bean �eld
85 wells sampled
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Empirical variogram example
For various values of  and a �xed , compute semivariance:h δ
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Empirical variogram example
Plot your semivariances:
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Empirical variogram example
Then choose (or optimize) a variogram model to �t through the
semivariance points:

Exponential
Spherical
Gaussian
...
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Empirical variogram example
Then choose (or optimize) a variogram model to �t through the
semivariance points:

Exponential
Spherical
Gaussian
...

Many more details on variograms here or in any geostatistics textbook (e.g.,
Cressie and Wikle, 2011)
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https://www.sciencedirect.com/topics/mathematics/variogram


Back to kriging
Recall that our goal is a prediction of a value  based on observations
in all sampled locations:

Ẑ(x0)

Ẑ(x0) =
m

∑
i

λiZ(xi)
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Back to kriging
Recall that our goal is a prediction of a value  based on observations
in all sampled locations:

In kriging (and many spatial interpolation methods), the  weights decay
as distance between  and  grows larger

--

How do we �nd the weights in kriging?

Ẑ(x0)

Ẑ(x0) =
m

∑
i

λiZ(xi)

λi

x0 xi
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Kriging weights
How do we �nd the weights in kriging?
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Kriging weights
How do we �nd the weights in kriging?

Hint:

The variogram tells us how correlated values are with other values near
them, and how this correlation falls as distance grows. It is a key input into
the kriging solution.
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Deriving the kriging solution
Note: full derivation in Cressie and Wikle (2011) [this is a very shorthand
version]

Goal: minimize mean squared prediction error

minλ E[(Z(x0) −
m

∑
i

λiZ(xi))2] subject to
m

∑
i

λi = 1
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Deriving the kriging solution
Note: full derivation in Cressie and Wikle (2011) [this is a very shorthand
version]

Goal: minimize mean squared prediction error

To solve:

�. Take derivatives with respect to each 
�. Set each �rst order condition = 0
�. Solve system of equations for  values that minimize mean squared

error

minλ E[(Z(x0) −
m

∑
i

λiZ(xi))2] subject to
m

∑
i

λi = 1

λi

λ∗
i
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Deriving the kriging solution

Result:

where  is the vector containing the semivariogram evaluated
between  and every other point, and

 is the  matrix containing all semivariogram evaluations for all
sampled point pairs.

Ẑ(x0) = {~γ(x0) + 1(1 − 1
′
Γ

−1
Z

~γ(x0))/(1
′
Γ

−1
Z 1)}′

Γ
−1
Z



λ̂

Z

~γ(x0)

x0

ΓZ m × m
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Deriving the kriging solution

Result:

where  is the vector containing the semivariogram evaluated
between  and every other point, and

 is the  matrix containing all semivariogram evaluations for all
sampled point pairs.

See Cressie and Wikle (2011) for similar derivation for , an
estimate of the prediction error

Other helpful resources here

Ẑ(x0) = {~γ(x0) + 1(1 − 1
′
Γ

−1
Z

~γ(x0))/(1
′
Γ

−1
Z 1)}′

Γ
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https://www.publichealth.columbia.edu/research/population-health-methods/kriging-interpolation
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Forms of kriging
There are three main forms of kriging:

�. Simple: The mean of the entire �eld is constant and known [restrictive,
not usually realistic]

�. Ordinary: The mean of the entire �eld is constant but unknown
[derivation shown above; most common]

�. Universal: The mean of the �eld varies over space and can be
estimated using measured variables [requires knowledge of and reason
for trend in mean]

There are also other forms! E.g., quantile kriging, log-normal kriging,
IRFk-kriging, etc.

We will work on implementation in R  in the next lab.
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Forms of kriging

Source: Lebrenz and Bardossy (2019)
46 / 49



Kriging summary
Pros:

Under each set of assumptions speci�c to the kriging form, kriging is
the best linear unbiased predictor ("BLUP")
Weights are determined almost entirely by the data, instead of a-priori
assumptions
Exact
Provides a measure of precision: σ2(x0)
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Kriging summary
Pros:

Under each set of assumptions speci�c to the kriging form, kriging is
the best linear unbiased predictor ("BLUP")
Weights are determined almost entirely by the data, instead of a-priori
assumptions
Exact
Provides a measure of precision: 

Cons:

Nonlinear methods may perform better (e.g., ML methods)
Variogram has to be approximated/estimated
Complex/computationally intensive

σ2(x0)

47 / 49

https://doi.org/10.1016/j.envsoft.2013.12.008


A note of caution on interpolation
All spatial interpolation approaches work best if:
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A note of caution on interpolation
All spatial interpolation approaches work best if:

The observed data are relatively dense and well distributed throughout
the region of interest

You have a lot of observations

All spatial interpolation approaches should be used cautiously, especially
if:

You have highly clustered data with a lot of open space between them

You don’t have very many observations
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Slides created via the R package xaringan.
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https://github.com/yihui/xaringan

